//
Physik im Alltag und Naturphänomene, Rubrik: "Schlichting! "

Der Blumen im Winter sah

Eisblumen_DSC08132rvSchlichting, H. Joachim. In: Spektrum der Wissenschaft 2 (2010), S. 39

Beim Wachsen von Eisblumen am Fenster wirken Zufall und Notwendigkeit zusammen.

Doch an den Fensterscheiben, Wer malte die Blätter da?
Ihr lacht wohl über den Träumer, Der Blumen im Winter sah?
Wilhelm Müller (1794 – 1827)

Heute muss man sie wohl als bedrohte Art ansehen, denn ihre größten Feinde – Zentralheizungen und wärmedämmende Doppelscheiben – haben sich weithin etabliert. In früheren Wintern jedoch gehörten Eisblumen am Fenster zu einer alltäglichen Erscheinung: »Es war ein ziemlich kalter Tag und draußen lag fußhoher Schnee. Drinnen aber war es behaglich … die Wanduhr ging in starkem Schlag und der Kachelofen tat das Seine … während Line weitab an dem ganz mit Eisblumen überdeckten Fenster saß und sich ein Guckloch gepustet hatte, durch das sie nun bequem sehen konnte, was auf der Straße vorging.« (Theodor Fontane, Unterm Birnbaum, 1885).
Zuvor war, davon dürfen wir ausgehen, die Temperatur der Glasscheibe allmählich immer tiefer gesunken. Zunächst unter den Taupunkt. Ab diesem Zeitpunkt ist mehr Wasserdampf in der Luft, als diese fassen kann, so dass er sich verflüssigt und kondensiert, sich also in Form winziger Tröpfchen an die Scheibe anlagert. Sobald deren Temperatur nun auch den Gefrierpunkt des Wassers unterschreitet – um mindestens ein bis zwei Grad –, kristallisieren sie schließlich zu Eis. Manchmal kommt es auch gar nicht erst zum Zwischenschritt des Verflüssigens. Denn unter bestimmten Bedingungen geht Wasserdampf auf direktem Weg in Eis über, er resublimiert.
Der Ursprung der Eisblumen liegt in winzigen Kristallen mit einer für Wassermoleküle charakteristischen sechseckigen Struktur. Sie entstehen an Kondensationskeimen, etwa Schmutzpartikeln, an denen sich Tröpfchen beziehungsweise Kristalle spontan bilden können. Ihre Form beeinflusst das Kristallwachstum zunächst in zufälliger Weise, bald aber kommt die Notwendigkeit hinzu. Denn wo die Kristallisation stattfindet, wird auch Wärme abgegeben, und zwar ganz schön viel.
Es ist dieselbe Menge, die man Eis zum Auftauen zuführen muss – und jeder weiß, wie lange sich Eisstücke im Erfrischungsgetränk halten. Das Kristallwachstum käme sogar zum Stillstand, würde die frei werdende Wärme nicht schnell genug abtransportiert. Das heißt aber auch: Der Kristall wächst bevorzugt dorthin, wo die Wärme am besten abgegeben werden kann, nämlich weg von seinem Ursprung. Es bilden sich darum exponierte Spitzen, an deren mitwachsenden Flanken die Wahrscheinlichkeit für weitere Anlagerungen ebenfalls steigt. Diese Nebenäste wachsen ihrerseits weder entlang der Hauptspitze noch im rechten Winkel dazu, sondern suchen stattdessen einen »schrägen« Kompromiss. Nur so können auch sie die entstehende Wärme optimal abgeben.
Allmählich entsteht ein farnartiges Gebilde, das ganz zum Schluss, wenn auch die Zwischenräume gefrieren, eine blattartige Form gewinnt. Aus dem Zusammenwirken von Zufall und Notwendigkeit sind Strukturen entstanden, wie wir sie auch bei (biologischen) Blättern und Blumen beobachten können: Sie ähneln einander zwar, sind aber nie identisch. Erfahrungsgemäß bilden sich die schönsten Formen bei einer Scheibentemperatur von etwa minus zwei Grad Celsius. Wirkliche Vielfalt entfaltet sich zudem nur, wenn das Fenster leicht verschmutzt ist und genügend Kondensationskeime vorhanden sind. Sauberkeit ist für Schönheit also keine Voraussetzung.

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

Diese Seite verwendet Akismet, um Spam zu reduzieren. Erfahre, wie deine Kommentardaten verarbeitet werden..

%d Bloggern gefällt das: