//
Physik im Alltag und Naturphänomene, Rubrik: "Schlichting! "

Surfende Wassertropfen

Bei einem Experiment fällt Wasser senkrecht aus einer Düse über einer Wasseroberfläche. Die einzelnen Tropfen bewegen sich noch eine Zeitlang vom Punkt des Auftreffens weg, bevor sie untergehen.

H. Joachim Schlichting. Spektrum der Wissenschaften 2 (2018), S. 60 -61

Manche Wassertropfen driften eine Zeitlang auf einer Wasseroberfläche, ohne mit dieser sofort zu verschmelzen. Das könnte an einem Luftpolster liegen, doch womöglich sind die physikalischen Effekte komplizierter als gedacht.

Und müssen Tropfen fallen,
wenn wir entzückt werden sollen?
Johann Wolfgang von Goethe (1749 – 1832)

Wenn ich an einem Springbrunnen sitze, achte ich neuerdings immer wieder auf die winzigen Tropfen, die jeweils kurze Zeit über die Wasseroberfläche im Becken treiben. Ich warte dann auf den Moment, in dem sie mit der Oberfläche verschmelzen. Die flinken Tröpfchen verschwinden dabei plötzlich und spurlos. Das unterscheidet sie von den meist größeren, träge auf dem Wasser ruhenden Blasen. Es drängt sich aber die Frage auf, warum die Tropfen überhaupt noch eine kleine Weile auf der Oberfläche kursieren und sich nicht sofort mit dem Wasser vereinigen, obwohl sie doch aus demselben Stoff bestehen.
Das Phänomen erinnert mich an einen ähnlichen Vorgang beim Kaffeezubereiten: Wenn der Kaffee vom Filter in die Kanne tropft, huschen oft ebenfalls kleine Kugeln über die Oberfläche des Getränks, um nach ihrem kurzen Ausflug ebenso unvermittelt zu verschwinden wie ihre Verwandten auf dem Teichwasser. In diesem Fall ist die Situation etwas anders, weil ein Temperaturunterschied zwischen der schon etwas abgekühlten Kaffeeoberfläche und dem heißen Tröpfchen besteht. Die Grenzflächenspannung ist nämlich temperaturabhängig, und durch einen Marangoni-Strömung genannten Effekt wird Flüssigkeit von einer Stelle mit einer geringeren Oberflächenspannung zu einer mit höherer transportiert. Das entspricht hier einer Ausgleichsströmung von der warmen Seite zur kühleren.
Nähert sich ein heißer Tropfen der Oberfläche des Kaffees, kühlt er an der Unterseite rasch ab. Die dorthin laufende Mikroströmung von wärmeren Bereichen des Tropfens reißt angrenzende Luftpartikel mit und bildet temporär ein Luftpolster (siehe Illustration). Es erscheint plausibel, dass das die Vereinigung verzögert – im Prinzip kennen wir so etwas bereits vom »Leidenfrost-Effekt« bei langlebigen Wassertropfen auf einer heißen Herdplatte (siehe »Wassertropfen auf der Rennbahn«, Spektrum Dezember 2016, S. 48).

Das Strömungsfeld eines heißen Tropfens über einer kühleren Wasseroberfläche führt Umgebungsluft in die Zwischenschicht. Der Abstand ist übertrieben gezeichnet, um die Richtung des mitgenommenen Luftfilms zu zeigen.

Von Temperaturdifferenzen zwischen Tropfen und Wasseroberfläche kann bei meinen Beobachtungen am Springbrunnen allerdings kaum die Rede sein. Offenbar ist dort trotz der phänomenologischen Ähnlichkeit ein anderer Effekt im Spiel.
Da die Erscheinung relativ leicht zu beobachten ist, haben sich Wissenschaftler schon früh damit auseinandergesetzt. Als erster veröffentlichte 1889 Lord Rayleigh (1842–1919) Arbeiten dazu. Er hielt für den Zeitpunkt der Verschmelzung vor allem die Verdrängung der Luftschicht zwischen Tropfen und Flüssigkeit für ausschlaggebend. Bei seinen Untersuchungen stellte er zahlreiche Einflussfaktoren fest. Dazu zählen die Oberflächenspannung, Viskosität und Löslichkeit der aufeinandertreffenden Substanzen sowie Verunreinigungen und statische elektrische Ladungen.
Die wissenschaftliche Diskussion ist seitdem nie ganz abgerissen. Unter kontrollierten Bedingungen lässt sich die Zahl der Einflussfaktoren immerhin verkleinern. Wenn man sich auf Tropfen aus reinem Wasser beschränkt, die man auf eine ebenso reine Wasseroberfläche fallen lässt, ergibt sich folgender Forschungsstand: Ab einer bestimmten Mindesthöhe verschmilzt der Tropfen stets unmittelbar. Auf unseren Springbrunnen bezogen heißt das, die aus relativ großer Höhe herunterfallenden Wassertropfen bleiben nicht selbst auf der Wasseroberfläche, sondern lösen durch ihren Aufprall Sekundärtropfen heraus. Diese fallen dann aus hinreichend niedriger Höhe zurück, wobei dann einige von ihnen einer sofortigen Vereinigung entziehen um noch ein wenig umher zu driften. In den Laborexperimenten zeigte sich zudem, was wir von den auf dem Kaffee tanzenden heißen Tropfen kennen. Ab einer bestimmten Temperaturdifferenz zwischen Tropfen und Flüssigkeit lässt sich die Verschmelzung sehr lange hinauszögern. Das erreicht man auch, wenn man die Flüssigkeitsoberfläche in Schwingung versetzt. Anschaulich gesprochen unterbricht die Bewegung die einsetzenden Vermischungsvorgänge immer wieder. Außerdem lässt sich, wie bereits Rayleigh festgestellt hat, der Zusammenschluss durch einen gezielten Einsatz elektrischer Ladungen verlangsamen oder beschleunigen.
Die wohl am weitesten verbreitete und am ehesten akzeptierte Erklärung für die driftenden Tropfen ist die Luftkissenhypothese. Demnach unterbleibt die Vereinigung solange, bis die zwischen den Grenzflächen eingeschlossene Luftschicht verschwunden ist. Viele Wissenschaftler sehen eine eindrucksvolle Bestätigung dafür insbesondere in »Newtonschen Ringen« zwischen dem Tropfen und der Flüssigkeitsoberfläche. Newtonsche Ringe sind der Ausdruck eines Interferenzphänomens, bei dem Lichtwellen in einer dünnen Luftschicht von der Größenordnung der Wellenlänge des sichtbaren Lichts gebrochen, reflektiert und zur Überlagerung gebracht werden. Das löscht bestimmte Anteile des Spektrums aus oder verstärkt sie, was sich an Stellen jeweils gleicher Schichtdicke durch farbige Ringe zeigt.
Allerdings äußern einige Forscher Zweifel an dieser Hypothese und führen alternative Erklärungen gegen die vermeintlichen Beweise an. So lasse die Reproduzierbarkeit des Phänomens zu wünschen übrig: Bei noch so großen Bemühungen, gleiche Versuchsbedingungen einzuhalten, wären sowohl sofortige Verschmelzungen als auch lange Lebensdauern der Tropfen feststellbar. Aus der Luftkissenhypothese sollte im Übrigen folgen, dass bei abnehmendem Luftdruck die Luftschicht zwischen Tropfen und Flüssigkeit ausgedünnt und damit die Verweildauer drastisch reduziert würde. Bei Wasser ist das aber mitnichten der Fall. In einigen Versuchen stellte man im Gegenteil sogar eine längere Lebensdauer der Tropfen fest.
Vor diesem Hintergrund schlagen einige Forscher ein alternatives Modell für das Phänomen vor. Sie zeigen, dass auf der Grenzfläche zwischen Wasser und Luft teilweise größere Schichten geordneter Wassermoleküle existieren. Diese könnten – so ihre Argumentation – wie eine Barriere wirken und ähnlich wie bei der Luftkissenhypothese die Wassermoleküle des Tropfens solange auf Abstand halten, bis die Schicht weit genug ausgedünnt ist. Erst dann überwiegen die molekularen Anziehungskräfte und führen eine Vereinigung herbei.
Das Geheimnis der driftenden Tropfen ist also noch nicht vollständig gelüftet. Das macht es umso spannender, sie am Springbrunnenteich und anderswo weiter zu beobachten.

Quellen
Klyuzhin, I. S. et al.: Persisting Water Droplets on Water Surfaces. In: Journal of Physical Chemistry B 114, 14020–14027, 2010
Neitzel, G. P., dell’Aversana, P.: Noncoalescence and Nonwetting Behavior of Liquids. In: Annual Review of Fluid Mechanics 34, S. 267–289, 2002

PDF : Warum gehen Wassertropfen manchmal nicht unter?

Video: Auf Wasser surfende Wassertropfen

Werbung

Diskussionen

4 Gedanken zu “Surfende Wassertropfen

  1. Goethe war schon sehr aufmerksam und achtsam. Und das Photo ist klasse.

    Verfasst von ele21 | 3. Februar 2018, 00:07
  2. Ich habe noch ein kurzes Video auf Youtube hochgeladen, auf dem die winzigen Tropfen daran zu erkennen sind, dass sie schneller als die Blasen über die Wasseroberfläche driften.

    Verfasst von Joachim Schlichting | 3. Februar 2018, 10:19
  3. sehr schön

    Verfasst von kopfundgestalt | 10. April 2018, 22:25

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

Diese Seite verwendet Akismet, um Spam zu reduzieren. Erfahre, wie deine Kommentardaten verarbeitet werden..

Photoarchiv

%d Bloggern gefällt das: