Dass der Rhabarber auch mal blühen könnte, ist mir in den Jahren, in denen er in unserem Garten wächst und uns mit den sauren Stangen versorgt, nicht wirklich aufgegangen. Erst als er es dann wirklich tat, wie in diesem Jahr, war ich über den gesamten Vorgang doch einigermaßen erstaunt. Die Pflanze bildete nämlich nicht nur Blätter, sondern einen steil aufwärts strebenden Trieb aus, der im Moment vermutlich seine größte Höhe von etwa 150 cm erreicht hat. Dabei habe ich ihn in Unwissenheit über den Vorgang auch wohl noch massiv gestört, weil ich die Blätter wie üblich abgeerntet hatte. Ich vermute, dass der Pflanze dadurch einiges an Energie entgangen sein muss, die sie für die Bildung der Blüte zusätzlich hätte verwerten können. Ich frage mich, wie groß sie dann wohl geworden wäre.
Apropos Rhabarberblatt. Bei Arno Schmidt (1914 – 1979) liest man:
„Ä – Felix-Oswald,“ hob Frau Ruth auch gleich an: „Gib ma-ma ! Von den hartgekochten Eiern – „; wickelte auch eine Brotscheibe aus dem Rhabarberblatt, in welches man sie (mein Rat!) zum Frischblieben ländlich geschlagen hatte; uralte Sitte. Aber <Eier das sauberste Essen>?: „Ich hab schon ma 1gehabt, da war ein wirggel-lebendijer Ohrwurm drin! – Und wenn ich nicht irre, berichtet eine <Bremische Naturforschende Gesellschaft> noch ganz andere Sachen: Neenee!“.
Überhaupt schien die Luft voller Fehlleistungen.*
___________________________________________________________________
* Arno Schmidt. Kühe in Halbtrauer. In: Ausgewählte Werke 3. Berlin; 1990. S. 74
Um auf die Bedeutung des Lichts in allen Lebensbereichen aufmerksam zu machen, hat die UNESCO den 16. Mai zum Internationalen Tag des Lichts erklärt. Das möchte ich zum Anlass nehmen, auf den ganz alltäglichen Sonnenaufgang hinzuweisen, der weder sprachlich noch physikalisch das ist, was er zu sein vorgibt. Sprachlich geht hier nichts auf, was vorher zu war. Da entsteht nichts, was später wieder verschwindet. Sowohl im geozentrischen als auch im heliozentrischen Weltbild entsteht dieser Eindruck dadurch, dass sich die Erde und die Sonne relativ zueinander bewegen. Wir gehen neuzeitlich-kopernikanisch davon aus, dass die Erde sich um die Sonne dreht und nicht umgekehrt, weil ansonsten beispielsweise die Sterne – je weiter desto schneller – kollektiv um die Erde rotieren müssten und das für weit entfernte Sterne auch noch mit Überlichtgeschwindigkeit. Trotzdem bleibt es beim Sonnenauf- und -untergang.
Was schon eher Kopfzerbrechen bereiten könnte, ist die Tatsache, dass wir die Sonne beim Auf- und Untergang nie da sehen, wo sie „in Wirklichkeit“ oder „geometrisch“ ist. Denn infolge der Brechung des Lichts bei ihrem langen Weg durch die Atmosphäre wird das Sonnenbild optisch angehoben und zwar etwa um einen Winkel, der dem Sonnendurchmesser entspricht (etwa 0,5 Grad). Wenn die Sonne beim Untergang den Horizont berührt, ist sie also „in Wirklichkeit“ schon untergegangen.
Diesen Gedanken könnte man philosophisch oder wie auch immer weiter vertiefen in Richtung auf die Frage, ob man denn ganz genau genommen (mit vielen Stellen hinter dem Komma) überhaupt je etwas dort sieht, wo es ist. Denn Lichtbrechung – und sei sie sie noch so klein – ist immer vorhanden, wenn Licht von einem Medium ins andere übergeht oder sich zum Beispiel die Dichte der Luft ändert. Überlegungen, die in diese Richtung laufen, kommen daher kaum zu einem befriedigenden Ergebnis. Eine ähnlich Spitzfindigkeit ergibt sich, wenn man wegen der Endlichkeit der Lichtgeschwindigkeit davon ausgehen würde, dass die Gegenstände stets einen Moment später und daher möglicherweise an der Stelle anderen Stelle gesehen werden. Bei der Sonne macht diese Differenz immerhin etwas 8 Minuten aus.
Also lassen wir es und erfreuen uns am Abbild der Sonne die hier (Foto) hinter dem Geäst von Bäumen untergeht. Das Sonnenlicht hat beim Durchgang durch die Atmosphäre und den zahlreichen Streuvorgängen mit der Luft und den darin enthaltenen Aerosolen so viel an Farben und Intensität eingebüßt, dass es nicht mehr weiß leuchtet, sondern hauptsächlich in gelben und roten Farbtönen (er)scheint. Man kann dann sogar bedenkenlos in die Sonne hineinblicken und beobachten, wie schnell sie absinkt. Wenn das Sonnenbild den Horizont „berührt“, dauert es gerade einmal 2 Minuten, bis der letzte Rest ihres Rands verschwindet. Und wenn man Glück hat, viel Glück, dann kann man auch noch erleben, dass sie sich mit einem grünen Blitz verabschiedet.
Wenn man will kann man daraus weitere tiefschürfende Gedanken schöpfen, wie beispielsweise im folgenden Text ausgeführt:
„Worum geht es? Durch den kopernikanischen Schock wird uns demonstriert, daß wir die Welt nicht sehen, wie sie ist, sondern daß wir ihre „Wirklichkeit“ gegen den Eindruck der Sinne denkend vorstellen müssen, um zu „begreifen“, was mit ihr der Fall ist. Da liegt das Dilemma: wenn die Sonne aufgeht, geht nicht die Sonne auf. Was die Augen sehen und was der astrophysisch informierte Verstand vorstellt, kann nicht mehr miteinander zur Deckung kommen. Die Erde wälzt sich im leeren Raum um sich selbst nach vorn, wobei der irreführende Eindruck entsteht, wir sähen die Sonne aufgehen. Solange das Universum besteht, gab es noch keinen Sonnenaufgang, sondern nur sture Erdumdrehungen, und dieser Befund wird nicht tröstlicher dadurch, daß wir aufgrund radioastronomischer und anderer Messungen zu der Vorstellung gezwungen sind, daß es vor einem Zeitpunkt t(x) weder die Sonne noch die Erde noch Augen gegeben hat, um deren Konstellationen zu sehen. Dann wären nicht nur die Sonnenaufgänge, sondern auch die Voraussetzungen des Scheins von Sonnenaufgängen in einem kosmischen Noch-Nicht verschwunden. Der augenscheinliche Sonnenaufgang verliert sich in einer mehrfachen Nichtigkeit, sobald wir den ptolemäischen „Schein“ zugunsten kopernikanisch organisierter Vorstellungen von „Wirklichkeit“ aufgeben. Radikaler als jedes metaphysische Vorstellen von „Wesenswelten“ dementiert das moderne physikalische Vorstellen der Körperwelt den ‚Schein der Sinne‘.“
___________________________________________________________________________________________________
Sloterdijk, Peter: Kopernikanische Mobilmachung und ptolemäische Abrüstung. Frankfurt a M 1987.
Wo und wie kommt es zu diesen Kristallen?
_________________________________________________________________________________________________________
Erklärung des Rätselfotos des Monats April 2023
Frage: Blickt man auf die Sonne oder den Mond?
Antwort: Wenn man nicht auf den Kontext achtet, könnte es sowohl der Mond als auch die Sonne sein. Vom Mond sind die Strukturen nicht zu erkennen, und die Sonne ist bei diesigem Wetter oft so gedimmt, dass sie wie der Mond aussieht. Aber es gibt Hinweise auf die Antwort. Im Vordergrund erscheinen die Blätter eines Baumes in einem roten Licht. Insbesondere die Blätter, deren Seite uns zugewandt ist, reflektieren rotes Sonnenlicht. Die Sonne liegt also hinter uns. Wir blicken daher auf den Mond, der ebenfalls im Licht der Sonne liegt.
Könnte man die Sprünge der Aufmerksamkeit messen, die Leistungen der Augenmuskeln, die Pendelbewegungen der Seele und alle die Anstrengungen, die ein Mensch vollbringen muß, um sich im Fluß einer Straße aufrecht zu halten, es käme vermutlich -so hatte er gedacht und spielend das Unmögliche zu berechnen versucht – eine Größe heraus, mit der verglichen die Kraft, die Atlas braucht, um die Welt zu stemmen, gering ist, und man könnte ermessen, welche ungeheure Leistung heute schon ein Menschvollbringt, der gar nichts tut.*
Mit diesem Zitat möchte ich allerdings nicht nahelegen, dass es das Beste sei, nichts zu tun 😉
______________________________________________________
* Robert Musil. Der Mann ohne Eigenschaften. Reinbek 1990, S. 12
.
Das Bild habe ich auf dem Umschlag eines alten Physikbuchs gefunden.
Nachdem der Winter nunmehr schrittweise auf dem Rückzug ist, drängen sich immer mal wieder Hinterlassenschaften der kalten Jahreszeit in den Blick. Manchmal zeigen diese sich von der schönsten Seite, wie beispielsweise im obigen Foto. Es handelt sich um eine Fliese, die während der Vereisung vor einiger Zeit mit Salz bestreut wurde, um die Eisschicht zum Schmelzen zu bringen und damit die Rutschgefahr zu beseitigen.
Durch Salz wird der Schmelzpunkt von Wassereis herabgesetzt. Es gefriert bei einer niedrigeren Temperatur als reines Wasser. Es bleibt also auch bei Temperaturen flüssig, die allerdings nicht zu weit unter dem normalen Gefrierpunkt von 0 °C liegen dürfen. Diese Bedingung ist in unseren Breiten den meisten Fällen erfüllt.
Auch eine bereits vorhandene Eisschicht kann oft mit Salz aufgetaut werden, weil sie stets mit einer dünnen Wasserschicht bedeckt ist, die sich mit dem Salz verbindet und zu immer tieferen Schichten vordringt.
Nachdem es wieder wärmer geworden, das Wasser verdunstet ist, bleibt das gelöste Salz zurück und verfestigt sich wieder. Dabei bilden sich der Gitterstruktur des Salzes (Natriumchlorid) entsprechend Salzkristalle, die teilweise ästhetisch ansprechende Muster bilden wie hier auf der früher vereisten und mit Salz behandelten Fliese.
Ich weiß, man sollte beim Enteisen mit Salz sparsam umgehen. Das tue ich normalerweise auch, aber in diesem Fall handelte es sich um eine lokal beschränkte Maßnahme, bei der alles Salz wieder zurückgewonnen wurde. Bevor ich die Fliesen säuberte, erlaubte ich mir jedoch das obige – wie ich meine naturschöne – Foto zu machen.
Mit dem Pflügen beginnt traditionellerweise die Feldbearbeitung. Die großflächige Umwälzung des Bodens erfordert enorm viel mechanische Energie. Diese wurde in früheren Zeiten von Tieren aufgebracht, die den Pflug Furche für Furche durch die feste Erde zogen und die meist bewachsene Oberfläche zum Verschwinden brachten. Das war für Mensch und Tier eine äußerst anstrengende und oft langwierige Tätigkeit und so etwas wie der Start in die neue Saison der Landbewirtschaftung.
Textilien, die man in bestimmter Weise „fallen“ lässt, „werfen“ Falten, die einem bestimmten „Fallprinzip“ gehorchen und vermutlich daher oft als ästhetisch ansprechend empfunden werden. An solche Textilien – Kleider, Vorhänge – musste ich denken, als ich in einer südfranzösischen Tropfsteinhöhle diese in vielen Jahrhunderten entstandenen Strukturen bewunderte. Sie sind Tropfen für Tropfen zur allmählichen Entfaltung gebracht worden, indem jeder Tropfen seinen Weg fand, bis er verdunstete und die gelösten Mineralien zurückließ. Man geht davon aus, dass die Tropfsteine nur etwa um einen Millimeter in zehn Jahren wachsen. Entscheidend ist dabei vor allem die Menge des tropfenden Wassers.
Gelenkt wird ein solcher langwieriger Prozess nicht durch einen innewohnenden Plan, sondern durch Zufall und Notwendigkeit. Dabei spielt das natürliche Prinzip, unter den gegebenen Umständen stets soviel Energie wie möglich an die Umgebung abzugeben, eine entscheidende Rolle. Würde der Prozess unter den gleichen Randbedingungen noch einmal ablaufen, so ergäbe sich zwar ein ähnliches aber nicht das gleiche Muster.
So könnte man denken, wenn man sieht (Foto), dass die Reifkristalle, die sich in der Nacht gebildet haben, nicht auf der Eisfläche angedockt haben, sondern an den teilweise eingefrorenen trockenen Blättern. Wenn man diese Situation mit der in einem früher beschriebenen ähnlichen Phänomen vergleicht, erscheint dies Wahl unverständlich. Sollte nicht das Eis mit seinen Eiskristallen der idealere Keim sein?
Ich vermute folgenden Grund für diese unterschiedliche Wahl. In der kalten klaren Nacht, in der die Reifkristalle an den Blättern heranwuchsen, waren die Blätter wesentlich stärker abgekühlt als die riesige Eisfläche. Denn die Wärmekapazität des massiven Eises ist wesentlich größer als die der dünnen vertrockneten Blätter. Bei gleichem Energieverlust pro Flächeneinheit kühlen sich daher letztere auf eine wesentlich tiefere Temperatur ab. Der Taupunkt wurde daher dort viel früher unterschritten als über der vergleichsweise warmen Eisfläche. Überschüssige Moleküle gab es daher vor allem an den viel kälteren Blättern, sodass sie vor allem dort andocken konnten.
Dies ist eine zugefrorene Wasserpfütze mit einer ursprünglich sehr wilden Topologie. Als sie mit Wasser volllief, ragten nur noch einige Relikte des Untergrunds aus dem Wasser heraus. Auf dem Foto ist das der hellbraune zerklüfte Teil. Der ihn umgebende dunkelbraune Bereich bildet eine Art Tableau, das vom Wasser gerade noch bedeckt war bevor der Frost einsetzte. Und als das Wasser dann gefror und die gesamte Pfütze bis auf den hellbraunen Teil mit einer Eisschicht überzog, war der dunkelbraune Bereich fest mit der transparenten Eisschicht überdeckt und verbunden. Unter der übrigen Eisschicht konnte man den noch mit Wasser gefüllten tieferen Teil des Pfützenbodens sehen, der eine ähnliche Braunfärbung aufwies wie das Tableau. Soweit die Szenerie einige Stunden nach Einbruch des Frostes.
Am nächsten Tag zeigte sich dann die im Foto dargestellte Szenerie. Der helle Bereich besteht aus einer Eisschicht, die keine Berührung mehr mit dem Wasser hat, auf der sie ursprünglich entstanden ist. Sie kann daher auch nicht dicker werden. Vielmehr überdeckt sie einen Hohlraum über dem weitgehend im Boden versickerten Wasser. Durch die hohe Luftfeuchte unter dieser Eisschicht bildete sich auf deren innerer Seite ein Reifbelag, durch den die Eisschicht undurchsichtig wurde.
Die Strukturen in dieser weißen Eisschicht sind darauf zurückzuführen, dass das Wasser wegen unterschiedlicher Wassertiefen und demzufolge unterschiedlich langer Versickerungszeiten andere Verläufe der Reifbildung bewirkt wurden.
Wegen der Unförmigkeit der dreidimensionalen Pfützenmorphologie entstand keine einheitliche Eisfläche, die vielleicht zum Glitschen geeignet gewesen wäre, sondern ein zweidimensionales Natur-Kunstwerk (Oxymoron!), das es meines Erachtens wert war fotografiert und hier gezeigt zu werden.
Wie kommt es zu diesem Flechtwerk?
Erklärung des Rätselfotos des Monats Januar 2023
Wie kommt es zu den Farben der Risse im Eis?
Antwort: Wir blicken auf eine Eisschicht, die durch eine äußere Einwirkung Risse bekommen hat und sofort danach in intensiven Farben erstrahlt. Es handelt sich um Strukturfarben, die durch Interferenz des Lichts auf die folgende Weise zustande kommt.
Das durch die transparente Eisschicht hindurch tretende Sonnenlicht wird an der Grenzschicht zwischen Eis und Luftspalt teils gebrochen, teils reflektiert. Das gebrochene Licht wird nach Durchlaufen der Luftschicht an der zweiten Grenzschicht zwischen Luft und Eis abermals teilweise reflektiert und gebrochen. Wenn sich zwei der an verschiedenen Grenzflächen reflektierten Lichtwellen im Auge oder auf dem Chip der Kamera überlagern, so kommt es wegen ihres Wegunterschieds zu einer entsprechenden Phasenverschiebung. Dadurch wird die farbliche Zusammensetzung des weißen Lichts verändert, was sich je nach der Dicke der Risse in unterschiedlichen Farben bemerkbar macht.
Mich faszinieren immer wieder einfache technische Lösungen praktischer Probleme. Dazu gehört auch der Weinkühler aus Ton. Man füllt ihn bis zu einer passenden Höhe mit Wasser und stellt die Wein-/Sektflasche hinein. Da der Ton porös ist, sodass das Wasser allmählich hindurchsickert wird die Außenwand feucht (siehe dunklen Bereich im Foto). Die Feuchtigkeit verdunstet. Da zur Verdunstung von Wasser Energie nötig ist, wird diese der Umgebung entzogen. Dafür kommt vor allem das Wasser infrage. Dieses kühlt sich daher ab und entzieht seinerseits im gleichen Maße der Weinflasche Energie mit dem gewünschten Effekt der Temperaturerniedrigung.
Der Antrieb des Vorgangs ist in der Tendenz des Wasserdampfes zu sehen, sich möglichst gleichmäßig über den zur Verfügung stehenden Raum zu verteilen. Voraussetzung für die Funktion dieses Kühlprozesses ist allerdings, dass die Luftfeuchte nicht zu hoch ist. Bei einer relativen Luftfeuchte von 100% würde genauso viel Wasserdampf kondensieren wie entsteht und das hilft in diesem Fall überhaupt nicht.
Übrigens nutzen asssimilierende Pflanzen dasselbe Prinzip, um Flüssigkeit von der Wurzel bis in die grünen Blätter zu transportieren. Daher ist es in grünen Wäldern auch so angenehm kühl: Der Umgebung wird Energie zur Verdunstung entzogen.
Wenn ein Wassertropfen auf eine feste Unterlage auftrifft, bildet er für den Bruchteil einer Sekunde eine Krone aus Wasser. Im unteren Foto sieht man einen seitlichen Blick auf eine solche Krone. Sie ist also ohne Hilfsmittel nicht wahrnehmbar. Daher empfand ich es als äußerst befriedigend, eine materielle und länger haltbare Nachbildung einer solchen Krone zu Gesicht zu bekommen (siehe oberes Foto). Der Ort des Geschehens ist eine wüstenartige Landschaft, die aus winzigen Sandkörnern besteht. Ein fallender Tropfen benetzt beim Aufprall den feinen Sand und reißt ihn beim Bestreiben eine Krone zu formen mit in die Höhe.
Da der Sand sehr wasserliebend (hydrophil) ist und sich sofort das Wasser des Tropfens einverleibt, wird er ein Stück weit mit in die Höhe gerissen, ohne jedoch die Höhe zu erreichen, die der Tropfen ohne den sandigen Ballast erreicht hätte und ohne die filigrane Substruktur auszubilden, die im unteren Foto ansatzweise zu erkennen ist.
Dafür wird die Krone jedoch für längere Zeit materialisiert. Denn anders als der trockene ist der befeuchtete Sand formbar und eine gewisse Zeit in dieser Form beständig, wie jedes Kind vom Sandburgenbau mit feuchtem Sand weiß.
Bleibt nur die Frage, wie der Tropfen in die Wüste gelangt. Nun, es war ein Schweißtropfen, den ich an einem heißen Tage bei einer Dünenwänderung verlor.
Die hohen Bäume haben weitgehend verhindert, dass sich in der vorangegangenen sternklaren Nacht die Energieverluste (durch Abstrahlung zum kalten Himmel) von den unter ihrem Dach hausenden kleineren Pflanzen in Grenzen hielt. Jedenfalls reichte die Abkühlung nicht aus, dass der Tau- und Gefrierpunkt unterschritten wurde. Sie blieben weitgehend trocken und eisfrei. Weitgehend. Denn eine Pflanze machte eine auffällige Ausnahme und ließ sich von einer leuchtend weißen Reifschicht überziehen. Vor dem ansonsten relativ dunklen, meist durch Brautöne bestimmten Hintergrund nimmt sich diese faszinierende Symbiose aus organischen und anorganischen Strukturen wie ein dendritischer Leuchtturm aus.
Diese Interpretation des Szenarios lässt sich dadurch stützen, dass ich von der Planze aus durch eine Lücke im Blätterdach der Bäume auf den unbewölkten Himmel blicken kann. Auf diese Weise strömt reichlich Licht ein, das an den Eisstrukturen nahezu vollständig reflektiert wird und zu diesem erhellenden Effekt führt – und mich zu dieser kleinen Geschichte anregt.
Nicht immer ist das Eiskratzen an zugefrorenen Autoscheiben ein Vergnügen. In diesem Fall war es anders. Ich konnte nämlich beim Beseitigen der Eisschicht meine Augen auf dem mit naturschönen Eiskristallbändern verzierten Dach weiden lassen. Ähnliche Formen hatte ich bislang nur selten und zwar meistens auf Fensterscheiben gesehen.
Beim Anblick dieser dendritischen Muster schlich mir eine (für einen Physiker nicht gerade schmeichelhafte) Frage durchs Gemüt: Greift die Natur bei der „Auswahl“ ihrer Motive manchmal in die falsche Schublade? Waren diese Strukturen nicht eigentlich den Fichten und Tannen vorbehalten?
Zunächst waren es Tautropfen. Der Temperaturabfall in der Nacht vor allem an kleinen Einheiten wie den Grasblättern ließ die Luftfeuchte über 100% ansteigen und den überschüssigen Wasserdampf in Form von wachsenden Wassertropfen kondensieren. Doch die weiter sinkende Temperatur unterschritt schließlich den Gefrierpunkt: Die Tropfen erstarrten und tauschten ihre spiegelnde Brillanz gegen eine eisige Härte ein. Nahm man sie in die Hand, so flossen sie dahin wie nichts…
Wie kommt es zu den Farben der Risse im Eis?
_________________________________________________________________________________________________________
Erklärung des Rätselfotos des Monats Dezember 2022
Frage: Warum werden die Blasen nach oben hin größer?
Antwort: Infolge der Druckabnahme scheidet sich das im Getränk gelöste Kohlenstoffdioxidgas an bestimmten Stellen in Form von gleichgroßen Blasen ab. Diese steigen im weitgehend konstanten Rhythmus perlenkettenartig auf. Dabei nehmen die Abstände zwischen zwei benachbarten Blasen zu. Liegt das etwa an deren Beschleunigung durch die zunehmende Auftriebskraft der größer werdenden Blasen? Nein, denn die mit der Geschwindigkeit der winzigen Blasen zunehmende Reibungskraft mit der Flüssigkeit sorgt dafür, dass bereits nach sehr kurzer Strecke der Wert der Auftriebskraft angenommen wird und eine gleichförmige Aufwärtsbewegung entsteht.
Man könnte auf den Gedanken kommen, die Blasen würden deshalb größer weil mit der Höhe der Druck durch das darüber befindliche Wasser geringer wird. Doch diese Druckabnahme aufgrund einer kleiner werdenden Wassersäule von typischerweise zehn Zentimeter beträgt nur etwa ein Hundertstel des atmosphärischen Luftdrucks – dieser entspricht einer etwa zehn Meter hohen Wassersäule. Daher ist der Einfluss vernachlässigbar klein. Entscheidend für das Wachstum der Blasen ist vielmehr, dass sie während ihrer Bewegung nach oben weiterhin CO2 aufnehmen.
Die Nordmanntanne schimmert bereits umrisshaft durch die Eisscholle hindurch, die ich aus der schmelzenden Eisschicht des bis vor kurzem zugefrorenen Teichs herausbrach. Sobald sie sich verflüssigt hat, wird der Blick frei und ein naturschönes Relikt des vorangegangenen Frosts vergangen sein. Die schöne Tanne wird bald danach ihre Nadeln abwerfen und ebenfalls vergehen.
Dazu fällt mir der Vers aus »Reuters Morgengesang« von Wilhelm Hauff (1802-1827) ein: Ach, wie bald schwindet Schönheit und Gestalt!
Nachdem sich der Frost weitgehend zurückgezogen hat, können wir seine langsam vergehenden Hinterlassenschaften bewundern. In diesem Foto ist der Rand eines bewegten und nur teilweise zugefrorenen Gewässers zu sehen, dass durch irgendwelche Hindernisse bedingt zu dieser doppelflügeligen Form gewachsen ist. Interessanterweise ist der Strukturierungsprozess noch nicht abgeschlossen. Der Phasenübergang vom festen in den flüssigen und gasförmigen Zustand ist im vollem Gange und er läuft alles andere als einheitlich ab. Da das Schmelzen zudem relativ viel Energie erfordert, dauert es eine ganze Weile bis merkliche Veränderungen zu beobachten sind. Natürlich passiert in diesen Tagen an allen vereisten Stellen etwas Ähnliches.
Warum werden die Blasen nach oben hin größer?
Erklärung des Rätselfotos des Monats November 2022
Frage: Woher kommen die Farben in dem Plastikbehälter?
Antwort: Die Ursache für diese Farbenpracht ist der 1844 von Wilhelm Karl Haidinger entdeckte Effekt, dass das Himmelslicht vor allem aus einer senkrecht zur Sonnenstrahlrichtung orientierten Region teilweise polarisiert ist (Physik in unserer Zeit 2009,40 (4), S. 211). Zum anderen hat der transparente Plastikbehälter die optische Besonderheit doppelbrechend zu sein. Er erlangt diese Eigenschaft allerdings erst durch die Spannung die dem Material bei der Herstellung des Behälters aufgeprägt wurde.
Doppelbrechend heißt, dass das durch ihn hindurchgehende Himmelslicht in zwei leicht unterschiedliche Richtungen gebrochen wird, so dass es in zwei Teilstrahlen zerfällt (Physik in unserer Zeit 2009, 40 (5), S. 262). Diese unterscheiden sich in ihrer Ausbreitungsgeschwindigkeit. Infolgedessen entsteht zwischen beiden Teilstrahlen eine unter anderem von der Wellenlänge abhängige Phasendifferenz. Sie macht sich in einer entsprechenden Drehung der Polarisationsebene bemerkbar, wenn sich die Teilstrahlen des Lichts beim Austritt aus der dünnen Plastikschicht überlagern.
Tritt dieses Licht dann durch das Polarisationsfilter der Sonnenbrille oder eines Fotoapparats, so werden den unterschiedlichen Drehungen der Polarisationsebene entsprechend die verschiedenen Wellenlängen nur mehr oder weniger gut durchgelassen. Die auf diese Weise veränderten Intensitäten der einzelnen Wellenlängen des ehemals weißen Lichts erscheinen jetzt farbig.
Hier treten die Farben allerdings auch ohne Polarisationsfilter auf. Das liegt daran, dass das teilweise polarisierte Himmellicht auf der Wasserschicht reflektiert wird. Blickt man unter einem bestimmten Winkel, dem sogenannten Brewster-Winkel auf die Wasseroberfläche, so sieht man hauptsächlich die senkrecht zur Einfallsebene reflektierten polarisierten Anteile. Das Licht ist also linear polarisiert wie beim Durchgang durch den Filter.
Der rotierende Torus fällt. Aber es dauert lange bis er danieder liegt und mit seinem Schatten zusammenfällt. Für mich enthält diese Bewegungsfigur eine große Symbolkraft.
Staub zeichnet sich dadurch aus, dass er kaum sichtbar sich auf alle Gegenstände niederlässt. Da Staubteilchen nur eine äußerst geringe Masse haben, ist wegen der Flächen-Volumen-Relation die Reibungskraft der Luft so groß, dass sie nur langsam sinken aber auch umgekehrt durch leichte Luftbewegungen wieder aufgewirbelt werden können.
Letzlich landet der meiste Staub auf waagerechten Flächen vor allem auf dem Fußboden. Dennoch verfügen diese Flächen über kleine Helfer, die angetrieben durch leichte Luftbewegungen einen großen Teil des Staubs einsammeln – die Flusen. Flusen setzen sich aus Haaren winzigen Resten von Textilien und ähnlichen Strukturen zusammen und haben die Eigenschaft anziehend auf den ordinären Staub zu wirken. Sie nehmen die kleinen Körnchen, die sich oft in ihrer Winzigkeit verstecken, bereitwillig auf und wachsen dadurch so stark an, dass sie schließlich nicht mehr übersehen werden können. Ein Bekannter von mir verriet mir, dass er diese kleinen „Staubsauger“ sehr schätze. Wenn sie eine bestimmte Größe erreicht hätten, brauchte er sie nur noch einzusammeln. Das sei schnell getan, geräuschlos und auch noch interessant. „Was du da für eindrucksvolle Strukturen zu sehen bekommst – einfach eindrucksvoll und vor allem Zeugnisse von der Kreativität der Natur“.
Mir ist zwar (noch) nicht ganz klar, welche Anziehungskräfte hier im Spiel sind, aber ich vermute, es sind elektrostatische. Aber davon vielleicht später.
Pilze beeindrucken mich immer wieder auf überraschend neue Weise. Im vorliegenden Fall sprießt aus dem Stamm eines gesundheitlich bereits angeschlagenen Baums ein ganzes Bündel eines Pilzes hervor, das wie ein üppiger Blumenstrauß wirkt und den Ernst der Situation zu konterkarieren scheint.
Im näheren Umfeld hat bereits die Trockenheit der letzten Jahre gewütet und einen Kahlschlag bewirkt. Der stehengebliebene Baum war wohl so etwas wie die Hoffnung eines Neuanfangs. Nun zeigt sich mit aller Zwiespältigkeit der wuchernden Schönheit, dass auch für diesen Baum – trotz des Schmucks – die Zukunft fragwürdig geworden ist.
Spinnen haben das Problem, ihre Netze so zu bauen, dass sie immer schön gespannt bleiben. Bei festen Begrenzungen muss das Netz von Zeit zu Zeit nachgespannt werden, wenn es durch äußere Einflüsse an Spannung und damit an Tauglichkeit für den Beutefang eingebüßt hat.
Im vorliegenden Fall (siehe Foto) ist die Spinne sehr clever zu Werke gegangen. Sie hat ihr Netz in die Krümmung eines langen Grashalms eingebaut. Dabei hat sie den Grashalm über die natürliche, schwerkraftsbedingte Krümmung hinaus durch die Radialfäden ihres Netzes gespannt, sodass die dadurch hervorgerufene rückwirkende Kraft des Halms umgekehrt das Netz unter Spannung hält.
Wird durch irgendwelche äußeren Einwirkungen, z.B. dem Aufprall einer dicken Fliege, das Spinnennetz gedehnt, so wird dadurch der Halm weiter gespannt und zieht in der nachfolgenden Entspannung das Spinnennetz wieder straff.
Tolle Erfindung unter Einbeziehung örtlicher Gegebenheiten – funktional und naturschön.
Dennoch ist in diesem Netz nicht alles in Ordnung. Durch die Tautröpfchen an den Fangfäden und vermutlich der vorangegangenen Einwirkung von Wind haben sich zahlreiche Fadenabschnitte berührt verbunden. Das dürfte für die ordnngsmäßige Funktion des Netzes im Sinne der Spinne nicht garade förderlich sein.
Bei Wanderungen in Wäldern schaue ich mir gern Bäume an, die nicht so ganz der Norm entsprechen. Die befinden sich meist dort, wo sie so wachsen dürfen wie sie wollen, also außerhalb oder am Rande der wirtschaftlich genutzten Waldbereiche. Ich habe diesem Blog bereits zahlreiche Exemplare anvertraut (z.B. hier und hier und hier und hier und hier). Sie sind oft so merkwürdig, dass es schwerfiele zu glauben, dass es so etwas gibt, hätte man es nicht direkt vor Augen.
Auf einer vor kurzem unternommenen Wanderung in den Dammer Bergen fand ich eine Baumgruppe vor, in der zwei Bäume über einen oberarmdicken Ast in Verbindung stehen. In den Fotos ist das Phänomen aus zwei verschiedenen Perspektiven zu sehen.
Schaut man sich das rechte Foto an, so scheint der linke Baum deutlich von der zusätzlichen Verbindung mit dem anderen Baum zu profitieren. Denn oberhalb der Einmündung dieses fremden Asts weitet sich der Stamm ganz entgegen der Norm, wonach Bäume unten dicker als oben sind.
Anders als bei den bisher entdeckten Baumverbindungen fällt mir hier keine plausible Geschichte ein, wie diese Verbindung wohl angebahnt und realisiert wurde. Vielleicht habt ihr eine Idee?
Beim Flug über das arktische Meereis war ich beeindruckt von der Schönheit der Strukturen im Eis. Was aus dem Flugzeugfenster wie kleine blaue bis zuweilen auch schwarze Tierchen mit langem Ringelschwanz aussah (linkes Foto), waren Süßwassertümpel (rechtes Foto), die in den Sommermonaten durch das Sonnenlicht in die Eisschicht hineingeschmolzen werden. Da die Eisschollen weitgehend aus Süßwasser bestehen, enthalten diese Tümpel ebenfalls Süßwasser.
Doch die Schönheit dieser Seen ist trügerisch. Zwar gibt es diese Tümpel schon lange, aber im Zuge der Klimaerwärmung nimmt ihre Zahl zu und das ist fatal. Denn diese azurblauen bis schwarzen Seen absorbieren mehr Sonnenenergie als die wasserfreien oft schneebedeckten Flächen, die das Licht hauptsächlich reflektieren. Damit wird aber das Abschmelzen des Eises beschleunigt.
Ein wesentlicher Grund für die Zunahme der Tümpel liegt nach Untersuchungen des Alfred-Wegener-Instituts darin, dass nicht nur die Polareisflächen abnehmen, sondern die Eisschichten jünger und dünner sind. Junges Eis ist glatter als das ältere, das durch Schollenbewegungen und Zusammenstöße rau und zerklüftet ist. Und da sich das Schmelzwasser auf der glatten Oberfläche besser verteilen kann, bilden sich Netze aus vielen Tümpeln.
Man kann es nicht übersehen, die beiden Heftzwecken zeigen eine deutliche Zuneigung zueinander und das in einer äußerst ungewöhnlichen Situation. Denn sie hocken beide auf dem Wasser und das in einer Mulde.
Ist das nicht merkwürdig? Die Heftzwecken bestehen aus Eisenblech. Eisen hat eine größere Dichte als Wasser und müsste untergehen. Außerdem hat Wasser schwerkraftsbedingt eine ebene, glatte Oberfläche – zumindest, wenn kein Wind weht. Hier aber ist es durch die schweren Heftzwecken deutlich eingedellt.
Noch kurioser wird es, wenn wir in nicht allzu großer Entfernung von der einsamen Zwecke eine Zweite zu Wasser lassen. Die Zwecken bewegen sich aufeinander zu mitsamt ihrer Delle und vereinigen sich, wie man es auf dem Foto sieht – mit offensichtlicher Zuneigung. Das traute Glück lässt sich jedoch leicht stören. Ein paar Tropfen Spüli und ab gehts auf den Grund des Gewässers.
Darüber kann man sich freuen und vielleicht auch wundern. Aber man kann auch versuchen es zu verstehen, indem man den Zwecken zunächst einmal jegliche Art eigener Entscheidungen abspricht und damit physikalisch wird. Bei der Beschreibung haben wir nämlich eines außer Acht gelassen. Die Wasseroberfläche wird nicht nur durch die Schwerkraft bestimmt, sondern auch durch die Oberflächenspannung. Diese äußert sich anschaulich gesprochen darin, dass Wasser so etwas wie ein feines Häutchen hat. Das spielt zwar im großen und ganzen kaum eine Rolle, aber wenn man in kleinerer Dimension von Heftzweckgröße wandelt, macht sich das Häutchen deutlich bemerkbar.
Um eine Heftzwecke auf dem Wasser zu platzieren, muss man es ganz vorsichtig am Dorn fassend auf dem Wasser platzieren. Dann geht es seiner größeren Dichte entsprechend ein wenig unter aber ohne die Oberfläche zu durchstoßen. Denn durch die Eindellung des Wassers wird die Wasseroberfläche vergrößert. Dazu ist aber Oberflächenenergie nötig. Da die Natur unter den gegebenen Bedingungen geneigt ist, soviel wie möglich Energie an die Umgebung abzugeben und daher in diesem Fall die Oberflächenenergie so klein wie möglich zu halten, wird eine rückwirkende Oberflächenkraft aktiviert, die die Gewichtskraft der Zwecke ausgleicht. Das geht natürlich nur in einem ganz engen Rahmen. Ein Eurostück würde man so nicht zum „schwimmen“ bringen.
Die zweite Heftzwecke verhält sich wie die erste. Auch sie dellt die Wasseroberfläche gegen die Minimierungstendenz der Oberflächenenergie ein. Sobald die beiden Dellen sich nahe genug kommen, bewegen sie sich aufeinander zu und formen eine gemeinsame Delle. Die Dehnung der Wasseroberfläche durch diese Summendelle ist kleiner als die beiden einzelnen. Auf diese Weise kann Oberflächenenergie gespart, d.h. an die Umgebung abgegeben werden. Und genau das passiert hier.
Wenn man die Oberflächenspannung durch ein paar Tropfen Spülmittel vermindert, reicht die rückwirkende Kraft nicht mehr aus. Also das Phänomen ist in der Tat merkwürdig, aber nur im ursprünglichen Wortsinn – würdig gemerkt zu weren.
Um die Schönheit solcher Tropfen genießen zu können, muss man sich auf das Niveau der Grashalme herablassen. Weil die Kamera oder das Auge den Tropfen in den Fokus nimmt, verschwimmt die Welt dahinter in einem Einerlei von Grüntönen. Aber die Strukturen gehen einem nicht ganz verloren, weil der Tropfen zumindest einen Teil des aus dieser Hinterwelt kommenden Lichts wie eine Lupe fokussiert und auf diese Weise die schon dem Blick verloren geglaubten Gräser mit einiger Schärfe wieder rekonstruiert. Das Ergebnis eines solchen Wechsels zwischen scharf und unscharf ist vermutlich ein weiteres ästhetisches Detail, das vielleicht unbewusst zur Schönheit des Gesamteindrucks beiträgt.
Es gibt aber auch noch kleinere Tropfen, die selbst in dieser Vergrößerung nicht mehr in allen Details zu erkennen sind. Sie kommen aber dem Ideal einer Kugel näher als die größeren.
Wieso sind kugelförmige Tropfen ein Ideal? Eine Antwort auf die Frage sind physikalische Prinzipien, denen sich auch die winzigen und daher kaum bemerkten Tropfen nicht entziehen können.
Die Wassertropfen stehen gewissermaßen unter dem Zwang die Kugelgestalt anzunehmen, weil das Volumen einer Portion Materie in Form einer Kugel von der kleinstmöglichen Oberfläche begrenzt wird. Damit wäre aber auch die zur Oberfläche proportionale Oberflächenenergie minimal. Und da jedes (abgeschlossene) System auf dieser unserer Welt so beschaffen ist, dass es so viel Energie wie unter den jeweils gegebenen Umständen möglich an die Umgebung abgibt, wäre damit diesem sogenannten Entropieprinzip Genüge getan.
Aber ein Tropfen ist nicht allein auf dieser Welt, er unterliegt folglich äußeren Einflüssen, die eine ideale Kugelgestalt der Wassertropfen unmöglich machen. Wir sehen also im Grunde so etwas wie energetische Kompromisse – aber sie sind es, die die Welt vielfältig, anregend und schön erscheinen lassen.
Und ‘ne merkwürdige Ecke ist das ja: heut früh lag hinten, mitten im Waldgras – wo gestern Abend noch nichts gewesen war ! – eine Kugel von einem Fuß Durchmesser. Gelb pampig-schuppig; als Otje mit’m Stock drauf schlug, wuppte es büchsen, und stieß dann eine flache, matt-giftgründe Rundum-Staubwolke aus : „‘n Bovist ! – Jung sollen sie eßbar sein.“ Aber Otje, massiv=verächtlich : „‘Eßbar‘ bist letzten Endes auch – Du. – Falls De nich zu sehr nach Bock schmeckst.“*
An diese Passage Arno Schmidts wurde ich erinnert, als ich das schon ältere Exemplar des Staubpilzes von der Größe eines Fußballs halb unter einer Hecke verdeckt entdeckte. Mich hat vor allem die große Annäherung an die Kugelform beeindruckt, die in der Natur zwar angestrebt, aber nicht immer in dieser Deutlichkeit erreicht wird.
Die Bedeutung der Kugelform in der natürlichen und wissenschaftlich-technischen Welt liegt vor allem darin, dass die Oberfläche im Verhältnis zum Volumen minimal ist. Das spielt in zahlreichen physikalischen Zusammenhängen eine wichtige Rolle. Beispielsweise tendieren Wassertropfen und Seifenblasen zur Kugel, weil dabei maximal viel Oberflächenenergie an die Umgebung abgegeben werden kann. Die Abgabe von unter den gegebenen Umständen maximal viel Energie an die Umgebung (Entropiesatz bzw. 2. Hauptsatz der Thermodynamik zählt zu den wesentlichen Vorgängen in der Welt.
* Arno Schmidt. Kühe in Halbtrauer. In: Ausgewählt Werke 3. Berlin 1990, S. 49
Mich beeindruckt immer wieder, wenn an einem trockenen Morgen, die Blätter einer Pflanze nichts besseres zu tun haben, als Flüssigkeit an die Umgebung abzugeben. Dieser als Guttation bezeichnete physiologische Vorgang ist eine Art Notfallprogramm der Pflanzen, seinen Säftehaushalt zu regulieren.
Weil ich mich immer wieder von diesen weinenden Pflanzen auch ästhetisch angesprochen fühle, möchte ich hier einmal mehr auf dieses Naturphänomen aufmerksam machen.
Wer sich am frühen Morgen anschickt, diesen Weg zu gehen, kann sich zwar über einiges freuen – die strenge Linearität in einer an sich nichtlinearen Umgebung – sozusagen als Kontrastprogramm, über den üppigen Bewuchs und eventuell weitere schöne Dinge.
Wer sich aber über das Anschicken und Anschauen hinauswagt und vielleicht wie ich mit dem Fahrrad über diese künstlich angelegte Piste flitzt, wird sich bestimmt ärgern. Ich habe mich geärgert. Denn nach einigen Metern war ich bis zu den Oberschenkeln so durchnässt, dass ich eine schnelle Trocknung in den Wind schreiben konnte, der an diesem Tage ziemlich selbstbewusst über das Land zog: Das Gras war so hydrophil, also Wasser liebend, dass es sich voll eingedeckt hatte, es aber auch – das muss ich zugeben – sehr großzügig mit meinen ebenfalls hydrophilen Hosenbeinen teilte. Ich wurde darob so hydrophob, dass der Elan, mit dem ich den Tag startete, vorerst verflogen war.
Das Wasser, das unfairerweise in meinen Hosenbeinen eine neue Heimat gefunden hatte, dachte gar nicht daran, zu verfliegen. Selbst als der Fahrtwind zu Hilfe kam und die Verdunstungsrate kräftig in die Höhe schnellen ließ, dauerte es eine ganz Weile, bis ein merklicher Teil verdunstet war.
Den energetischen Preis dafür musste ich obendrein bezahlen: Indem der Wind den durch Verdunstung entstandenen Wasserdampf abtransportierte, wurde die Verdunstungsrate stark angefacht – mit der unangenehmen Konsequenz, dass die dafür nötige Energie meinen Beinen durch Wärme entzogen wurde, was am frühen Morgen, wenn die Sonne noch nicht so richtig hochgekommen ist, hydrophobe Gedanken geradezu provoziert.
Bei stehender Luft bleibt der Wasserdampf erstaunlich lange in der Nähe seines Ursprungsortes – also meinen in den Hosenbeinen steckenden, im Unterschied zu diesen aber sehr empfindlich auf warm und kalt reagierenden Beinen. Ohne weitere Bewegung und damit ohne Wind hätten sich die nassen Hosenbeine auf Körpertemperatur erwärmt und auf diese Weise zumindest eine mittelerträgliche Situation geschaffen. Aber wegen der großen Verdunstungswärme von Wasser hätte es sehr lange gedauert, bis eine merkliche Trocknung eingetreten wäre. Also verwarf ich diesen Gedanken, trat kräftig in die Pedalen und überließ dem Fahrtwind unter Ausnutzung meiner Körperwärme die Hosenbeine zu trocknen.
Der Tag wurde warm, er wurde sogar so warm, dass diesmal die Feuchtigkeit durch Schwitzen von meinen Beinen ausging und von den hydrophilen Hosenbeinen von der anderen Richtung aufgenommen wurde und im Fahrwind zu einer angenehmen Kühle führte. So startete ich an diesem Tag als Hydrophiler, wurden zwischendurch Hydrophober und kehrte schließlich wieder als Hydrophiler zurück. Diese Bekehrung war zwar nicht das einzige Highlight dieses Tagesausflugs aber ein sehr ungewöhnliches.
Der alte Pilsumer Leuchtturm ist lange im Ruhestand. Vor ihm dreht sich ein vergleichsweise gigantisches Windrad. Aber nicht nur das Alter und die Größe machen den Unterschied. Der Leuchtturm benötigte zu seiner Zeit Energie, um den Schiffen heimzuleuchten. Das Windrad erzeugt Energie und zwar um Größenordnungen mehr als der Leuchtturm verbrauchte. Der Größenunterschied ist hier auch visuell in Szene gesetzt.
Der Leuchtturm steht nicht nur auf dem Deich, sondern auch für eine längst vergangene Zeit. Das Windrad produziert erneuerbare Energie und dreht sich für eine neue Zeit. Es ist nicht das einzige an der deutschen Nordseeküste und findet daher kaum noch Beachtung. Der Pilsumer Leuchtturm ist einzig(artig) auf der Welt und genießt insbesondere bei Touristen große Beliebtheit und nicht erst seit Otto ihn in einem seiner Filme auftreten ließ.
H. Joachim Schlichting. Spektrum der Wissenschaft 5 (2022), S. 77-78
Es regnete so stark, daß alle Schweine rein
und alle Menschen dreckig wurden
Georg Christoph Lichtenberg (1742–1799)
Auf Pflanzenblättern sammeln sich Pollen und anderer feiner Staub. Ein Regenschauer wirkt reinigend und hinterlässt manchmal Tropfen, die einiges über die physikalischen Vorgänge bei der Schmutzbeseitigung verraten.
Manche Pflanzen verteilen ihre Pollen so verschwenderisch, dass andere in ihrer Nachbarschaft regelrecht mit einer Schicht aus Blütenstaub eingedeckt werden. Das kann die betroffenen Blätter in ihrer Photosynthese einschränken. Zum Glück sorgen ab und zu Regenschauer wieder für klare Verhältnisse. An Wassertropfen, die an den Blättern hängenbleiben, kann man nachvollziehen, wie die Reinigungsvorgänge physikalisch ablaufen.
Das zeigt sich zum Beispiel an Maiglöckchen (siehe »Maiglöckchenblatt«). Nach einem heftigen Regenschauer sind bei anschließendem Sonnenschein auf waagerecht ausgerichteten, leicht konkaven Blättern einige liegen gebliebene Wassertropfen zu sehen. An dem größten von ihnen lassen sich die wesentlichen Aspekte des Reinigungsvorgangs rekonstruieren. Neben einer kleinen Spiegelung der Sonne fällt ein größerer heller Fleck auf der höchsten Stelle des Tropfens auf. Wie man an seinem Schatten auf dem Blatt erkennen kann, hat er einen materiellen Ursprung: eine nahezu kreisförmige Ansammlung von Pollenkörnern, die der Regen beim Gleiten über das ehemals bestaubte Blatt eingesammelt hat.
Wenn Regentropfen auf Bäumen oder anderen Pflanzen landen, hängt ihr Schicksal vor allem von der Beschaffenheit der Blattoberfläche ab. Bei wasserliebenden (hydrophilen) Flächen ist für eine gemeinsame Grenzfläche zwischen Wasser und Blatt weniger Energie nötig als zwischen Wasser und Luft. Die Tropfen breiten sich also möglichst ausladend auf dem Blatt aus. Bei wasserabweisenden (hydrophoben) Flächen muss hingegen verhältnismäßig viel Energie aufgebracht werden, und die gemeinsame Grenzfläche zwischen Blatt und Wasser bleibt daher vergleichsweise klein.
Ein Maß für die Benetzbarkeit ist der so genannte Kontaktwinkel, der sich zwischen Festkörper und Flüssigkeit einstellt. Von Hydrophobie spricht man, wenn er größer ist als 90 Grad. Das ist bei den Maiglöckchen offenbar der Fall. Insbesondere die kleinen Tropfen erscheinen fast kugelförmig. Bei ihnen macht sich der Einfluss der Schwerkraft weniger stark bemerkbar als bei den deutlich abgeflachten voluminöseren Exemplaren.
Sobald Regentropfen auf dem Maiglöckchenblatt landen, nehmen sie die Pollen auf, mit denen sie in Kontakt geraten. Die Pollen sind hydrophil und bleiben deswegen am Wasser haften. Interessanterweise versammeln sie sich entgegen der Schwerkraft an der höchsten Stelle der Tropfen und ordnen sich nahezu kreisförmig an.
Die Vorgänge lassen sich auf einfache Weise in einem Freihandexperiment nachvollziehen. Dazu füllt man ein Trinkglas vorsichtig so voll mit Wasser, dass es sich über den Rand hinaus aufwölbt – die Oberflächenspannung und die Hydrophilie des Glases verhindert ein Überlaufen. Die höchste Stelle des konvexen Wasserspiegels liegt dann in der Mitte. Gibt man nun einige Styroporkügelchen auf die Oberfläche, driften sie sofort dorthin und ziehen sich gegenseitig an (siehe mittleres Foto). Sie tendieren dazu, gemeinsam eine hexagonale Form mit minimalem Umfang anzunehmen. Bei einer größeren Anzahl kleiner Teilchen wie den Pollen erscheint das als Kreis.
Durch die Benetzung der Kügelchen werden diese ein wenig tiefer ins Wasser gezogen, als es ihrem Gewicht entspricht. Ähnlich wie bei einem im Schwimmbad herabgedrückten Ball provoziert das eine zusätzliche Auftriebskraft. Bei der erstbesten Gelegenheit nehmen die Teilchen daher die jeweils höchste Stelle ein. Deswegen wandern die Pollen am Tropfen und die Styroporkügelchen die gewölbte Wasseroberfläche im Trinkglas empor. Die gegenseitige Anziehung erfolgt aus demselben Grund. Sobald ein Teilchen in die Reichweite des konkaven Meniskus eines anderen kommt, steigen sie jeweils darin auf, bis nur noch eine schmale Wasserlamelle zwischen beiden besteht.
Der reinigende Effekt durch Staubpartikel einsammelnde Tropfen ist am stärksten bei hydrophoben Blättern ausgeprägt, also solchen, die von Wasser nur wenig benetzt werden. Da die Lotuspflanze das Phänomen besonders eindrucksvoll zeigt, spricht man auch vom Lotuseffekt. Er hat seine Ursache in einer besonderen mikroskopischen Struktur und wird häufig als Paradebeispiel für die Bionik genannt, bei der es darum geht, natürliche Phänomene technisch zu adaptieren. So reinigen sich speziell beschichtete Oberflächen bei einem Regenguss selbst.
Aber selbst bei hydrophilen Pflanzenblättern kann es bei größeren Schmutzansammlungen zu einer Art Hydrophobisierung kommen. Indem die aufprallenden Tropfen sich mit einer Staubschicht umgeben, haben die Blätter weniger direkten Kontakt zum Wasser, und die Hydrophilie nimmt ab. Den Effekt kann man ebenfalls durch ein einfaches Experiment nachvollziehen. Träufelt man etwas Wasser auf Bärlappsporen, so werden die Tropfen mehr oder weniger vollständig damit überzogen, während sie über das Puder kullern (siehe unteres Foto). Jetzt erfolgt der Kontakt mit dem Untergrund nur noch über die Staubhülle, und so werden die ummantelten Tropfen praktisch hydrophob. Sie rollen bei der kleinsten Neigung vom Blatt hinab und hinterlassen schließlich eine mehr oder weniger gesäuberte Unterlage.
Die beiden Steine sinken mit dem auf- und ablaufendem Wasser am Strand immer etwas tiefer in den Sand. Das geht langsam, die Natur hat Zeit. Infolge des immer wieder anströmenden Wassers wird der Stein unterspült und findet sich schließlich in einer kleinen Vertiefung wieder. Dieser Vertiefung strebt das im Sand gespeicherte Wasser zu. Aber es tut dies mit System. Nicht jede Wasserportion wählt ihren eigenen Weg, sondern den bereits von anderen gebahnten, wodurch ein kleines Rinnsal entsteht. Und dieses Rinnsal fließt in ein größeres und das größere Rinnsal in ein noch größeres. Warum so umständlich? Nur um dem Menschen einen naturschönen Anblick zu bieten? Das Wasser strebt auch hier wieder der tiefsten Stelle zu, weil dadurch Energie an die Umgebung abgegeben werden kann. Die bereits vorhandenen Rinnsale sind lokal gesehen die tiefsten Stellen.
Interessanterweise wird die Energie nicht irgendwie, sondern auf – ich möchte sagen – „ökonomische“ Weise abgegeben, indem pro Zeiteinheit so wenig Energie wie möglich an die Umgebung übergeht.
Das Ergebnis sind Strukturen, die in den meisten Fällen von den Menschen als geordnet oder ästhetisch ansprechend empfunden werden.
Eine physikalische Vertiefung dieser Überlegungen findet man hier.
Flammen lodern züngelnd nach oben, brennendes Holz knistert, Funken sprühen in wilden Wirbeln hoch über dem Feuer, Gesichter glühen im Schein der Flammen und der Wärmestrahlung. Die Menschen erleben in der Betrachtung des Osterfeuers eine der elementaren Urgewalten und lassen sich mehr oder weniger innerlich beteiligt von den dadurch ausgelösten Gedanken und Gefühlen forttragen.
Das Osterfeuer gilt den Christen als ein Symbol für die Auferstehung von Jesus Christus. Aus einigen Quellen geht aber auch hervor, dass mit dem Licht der Winter und die dunkle Jahreszeit verabschiedet oder ausgetrieben werden.
Auf dem Foto fällt auf, dass sich die Flammen in heller Aufruhr befinden. Links oben scheint sich ein Flammenfragment selbständig zu machen und das Weite zu suchen. Daran kann man zweierlei erkennen. Zum einen wird deutlich, dass für die Flamme – zumindest für kurze Zeit – keine direkte Verbindung zum brennenden Holz nötig ist. Denn nicht das Holz an sich brennt, sondern die abgegebenen brennbaren Gase. Zum anderen sieht man nur den Teil der Flamme, der für uns sichtbares Licht abgibt. Das ist erst bei Temperaturen oberhalb von etwa 700° C der Fall.
Beim Osterfeuer wird außerdem der Einfluss der Wärme durch Strahlung fühlbar. Es ist also weniger die erwärmte Luft, die uns zwangsläufig auf einen Sicherheitsabstand zum Feuer bringt, sondern vor allem die Wärmestrahlung. Die in der ersten Reihe zum Feuer hin stehenden Menschen, spüren dies besonders stark und wechseln bald in eine weiter hinter liegende Reihe. So bringt die Strahlungswärme zumindest die ersten Reihen in eine ständige „Konvektionsbewegung“. Erhitzte Menschen gehen nach hinten, kühle Menschen geraten nach vorn, bis auch sie wieder nach hinten wechseln und so weiter… Menschen sind eben auch nur Moleküle.