//
Artikel Archiv

Energie und Entropie

Diese Kategorie enthält 144 Beiträge

Rätselfoto des Monats Februar 2023

Wie kommt es zu diesem Flechtwerk?


Erklärung des Rätselfotos des Monats Januar 2023

Wie kommt es zu den Farben der Risse im Eis?

Antwort: Wir blicken auf eine Eisschicht, die durch eine äußere Einwirkung Risse bekommen hat und sofort danach in intensiven Farben erstrahlt. Es handelt sich um Strukturfarben, die durch Interferenz des Lichts auf die folgende Weise zustande kommt.
Das durch die transparente Eisschicht hindurch tretende Sonnenlicht wird an der Grenzschicht zwischen Eis und Luftspalt teils gebrochen, teils reflektiert. Das gebrochene Licht wird nach Durchlaufen der Luftschicht an der zweiten Grenzschicht zwischen Luft und Eis abermals teilweise reflektiert und gebrochen. Wenn sich zwei der an verschiedenen Grenzflächen reflektierten Lichtwellen im Auge oder auf dem Chip der Kamera überlagern, so kommt es wegen ihres Wegunterschieds zu einer entsprechenden Phasenverschiebung. Dadurch wird die farbliche Zusammensetzung des weißen Lichts verändert, was sich je nach der Dicke der Risse in unterschiedlichen Farben bemerkbar macht.

Werbung

Der Weinkühler leckt…

Mich faszinieren immer wieder einfache technische Lösungen praktischer Probleme. Dazu gehört auch der Weinkühler aus Ton. Man füllt ihn bis zu einer passenden Höhe mit Wasser und stellt die Wein-/Sektflasche hinein. Da der Ton porös ist, sodass das Wasser allmählich hindurchsickert wird die Außenwand feucht (siehe dunklen Bereich im Foto). Die Feuchtigkeit verdunstet. Da zur Verdunstung von Wasser Energie nötig ist, wird diese der Umgebung entzogen. Dafür kommt vor allem das Wasser infrage. Dieses kühlt sich daher ab und entzieht seinerseits im gleichen Maße der Weinflasche Energie mit dem gewünschten Effekt der Temperaturerniedrigung.
Der Antrieb des Vorgangs ist in der Tendenz des Wasserdampfes zu sehen, sich möglichst gleichmäßig über den zur Verfügung stehenden Raum zu verteilen. Voraussetzung für die Funktion dieses Kühlprozesses ist allerdings, dass die Luftfeuchte nicht zu hoch ist. Bei einer relativen Luftfeuchte von 100% würde genauso viel Wasserdampf kondensieren wie entsteht und das hilft in diesem Fall überhaupt nicht.
Übrigens nutzen asssimilierende Pflanzen dasselbe Prinzip, um Flüssigkeit von der Wurzel bis in die grünen Blätter zu transportieren. Daher ist es in grünen Wäldern auch so angenehm kühl: Der Umgebung wird Energie zur Verdunstung entzogen.

Tropfen im Sand

Wenn ein Wassertropfen auf eine feste Unterlage auftrifft, bildet er für den Bruchteil einer Sekunde eine Krone aus Wasser. Im unteren Foto sieht man einen seitlichen Blick auf eine solche Krone. Sie ist also ohne Hilfsmittel nicht wahrnehmbar. Daher empfand ich es als äußerst befriedigend, eine materielle und länger haltbare Nachbildung einer solchen Krone zu Gesicht zu bekommen (siehe oberes Foto). Der Ort des Geschehens ist eine wüstenartige Landschaft, die aus winzigen Sandkörnern besteht. Ein fallender Tropfen benetzt beim Aufprall den feinen Sand und reißt ihn beim Bestreiben eine Krone zu formen mit in die Höhe.

Da der Sand sehr wasserliebend (hydrophil) ist und sich sofort das Wasser des Tropfens einverleibt, wird er ein Stück weit mit in die Höhe gerissen, ohne jedoch die Höhe zu erreichen, die der Tropfen ohne den sandigen Ballast erreicht hätte und ohne die filigrane Substruktur auszubilden, die im unteren Foto ansatzweise zu erkennen ist.
Dafür wird die Krone jedoch für längere Zeit materialisiert. Denn anders als der trockene ist der befeuchtete Sand formbar und eine gewisse Zeit in dieser Form beständig, wie jedes Kind vom Sandburgenbau mit feuchtem Sand weiß.
Bleibt nur die Frage, wie der Tropfen in die Wüste gelangt. Nun, es war ein Schweißtropfen, den ich an einem heißen Tage bei einer Dünenwänderung verlor.

Reif für ein Foto

Die hohen Bäume haben weitgehend verhindert, dass sich in der vorangegangenen sternklaren Nacht die Energieverluste (durch Abstrahlung zum kalten Himmel) von den unter ihrem Dach hausenden kleineren Pflanzen in Grenzen hielt. Jedenfalls reichte die Abkühlung nicht aus, dass der Tau- und Gefrierpunkt unterschritten wurde. Sie blieben weitgehend trocken und eisfrei. Weitgehend. Denn eine Pflanze machte eine auffällige Ausnahme und ließ sich von einer leuchtend weißen Reifschicht überziehen. Vor dem ansonsten relativ dunklen, meist durch Brautöne bestimmten Hintergrund nimmt sich diese faszinierende Symbiose aus organischen und anorganischen Strukturen wie ein dendritischer Leuchtturm aus.
Diese Interpretation des Szenarios lässt sich dadurch stützen, dass ich von der Planze aus durch eine Lücke im Blätterdach der Bäume auf den unbewölkten Himmel blicken kann. Auf diese Weise strömt reichlich Licht ein, das an den Eisstrukturen nahezu vollständig reflektiert wird und zu diesem erhellenden Effekt führt – und mich zu dieser kleinen Geschichte anregt.

Von der Lust Eis zu kratzen…

Nicht immer ist das Eiskratzen an zugefrorenen Autoscheiben ein Vergnügen. In diesem Fall war es anders. Ich konnte nämlich beim Beseitigen der Eisschicht meine Augen auf dem mit naturschönen Eiskristallbändern verzierten Dach weiden lassen. Ähnliche Formen hatte ich bislang nur selten und zwar meistens auf Fensterscheiben gesehen.
Beim Anblick dieser dendritischen Muster schlich mir eine (für einen Physiker nicht gerade schmeichelhafte) Frage durchs Gemüt: Greift die Natur bei der „Auswahl“ ihrer Motive manchmal in die falsche Schublade? Waren diese Strukturen nicht eigentlich den Fichten und Tannen vorbehalten?

Kalt erwischt

Zunächst waren es Tautropfen. Der Temperaturabfall in der Nacht vor allem an kleinen Einheiten wie den Grasblättern ließ die Luftfeuchte über 100% ansteigen und den überschüssigen Wasserdampf in Form von wachsenden Wassertropfen kondensieren. Doch die weiter sinkende Temperatur unterschritt schließlich den Gefrierpunkt: Die Tropfen erstarrten und tauschten ihre spiegelnde Brillanz gegen eine eisige Härte ein. Nahm man sie in die Hand, so flossen sie dahin wie nichts…

Rätselfoto des Monats Januar 2023

Wie kommt es zu den Farben der Risse im Eis?

_________________________________________________________________________________________________________

Erklärung des Rätselfotos des Monats Dezember 2022

Frage: Warum werden die Blasen nach oben hin größer?

Antwort: Infolge der Druckabnahme scheidet sich das im Getränk gelöste Kohlenstoffdioxidgas an bestimmten Stellen in Form von gleichgroßen Blasen ab. Diese steigen im weitgehend konstanten Rhythmus perlenkettenartig auf. Dabei nehmen die Abstände zwischen zwei benachbarten Blasen zu. Liegt das etwa an deren Beschleunigung durch die zunehmende Auftriebskraft der größer werdenden Blasen? Nein, denn die mit der Geschwindigkeit der winzigen Blasen zunehmende Reibungskraft mit der Flüssigkeit sorgt dafür, dass bereits nach sehr kurzer Strecke der Wert der Auftriebskraft angenommen wird und eine gleichförmige Aufwärtsbewegung entsteht.
Man könnte auf den Gedanken kommen, die Blasen würden deshalb größer weil mit der Höhe der Druck durch das darüber befindliche Wasser geringer wird. Doch diese Druckabnahme aufgrund einer kleiner werdenden Wassersäule von typischerweise zehn Zentimeter beträgt nur etwa ein Hundertstel des atmosphärischen Luftdrucks – dieser entspricht einer etwa zehn Meter hohen Wassersäule. Daher ist der Einfluss vernachlässigbar klein. Entscheidend für das Wachstum der Blasen ist vielmehr, dass sie während ihrer Bewegung nach oben weiterhin CO2 aufnehmen.

Durch die Scholle gesehen

Die Nordmanntanne schimmert bereits umrisshaft durch die Eisscholle hindurch, die ich aus der schmelzenden Eisschicht des bis vor kurzem zugefrorenen Teichs herausbrach. Sobald sie sich verflüssigt hat, wird der Blick frei und ein naturschönes Relikt des vorangegangenen Frosts vergangen sein. Die schöne Tanne wird bald danach ihre Nadeln abwerfen und ebenfalls vergehen.
Dazu fällt mir der Vers aus »Reuters Morgengesang« von Wilhelm Hauff (1802-1827) ein: Ach, wie bald schwindet Schönheit und Gestalt!

Gebrochene Symmetrie

Nachdem sich der Frost weitgehend zurückgezogen hat, können wir seine langsam vergehenden Hinterlassenschaften bewundern. In diesem Foto ist der Rand eines bewegten und nur teilweise zugefrorenen Gewässers zu sehen, dass durch irgendwelche Hindernisse bedingt zu dieser doppelflügeligen Form gewachsen ist. Interessanterweise ist der Strukturierungsprozess noch nicht abgeschlossen. Der Phasenübergang vom festen in den flüssigen und gasförmigen Zustand ist im vollem Gange und er läuft alles andere als einheitlich ab. Da das Schmelzen zudem relativ viel Energie erfordert, dauert es eine ganze Weile bis merkliche Veränderungen zu beobachten sind. Natürlich passiert in diesen Tagen an allen vereisten Stellen etwas Ähnliches.

Rätselfoto des Monats Dezember 2022

Warum werden die Blasen nach oben hin größer?


Erklärung des Rätselfotos des Monats November 2022

Frage: Woher kommen die Farben in dem Plastikbehälter?

Antwort: Die Ursache für diese Farbenpracht ist der 1844 von Wilhelm Karl Haidinger entdeckte Effekt, dass das Himmelslicht vor allem aus einer senkrecht zur Sonnenstrahlrichtung orientierten Region teilweise polarisiert ist (Physik in unserer Zeit 2009,40 (4), S. 211). Zum anderen hat der transparente Plastikbehälter die optische Besonderheit doppelbrechend zu sein. Er erlangt diese Eigenschaft allerdings erst durch die Spannung die dem Material bei der Herstellung des Behälters aufgeprägt wurde.

Doppelbrechend heißt, dass das durch ihn hindurchgehende Himmelslicht in zwei leicht unterschiedliche Richtungen gebrochen wird, so dass es in zwei Teilstrahlen zerfällt (Physik in unserer Zeit 2009, 40 (5), S. 262). Diese unterscheiden sich in ihrer Ausbreitungsgeschwindigkeit. Infolgedessen entsteht zwischen beiden Teilstrahlen eine unter anderem von der Wellenlänge abhängige Phasendifferenz. Sie macht sich in einer entsprechenden Drehung der Polarisationsebene bemerkbar, wenn sich die Teilstrahlen des Lichts beim Austritt aus der dünnen Plastikschicht überlagern.

Tritt dieses Licht dann durch das Polarisationsfilter der Sonnenbrille oder eines Fotoapparats, so werden den unterschiedlichen Drehungen der Polarisationsebene entsprechend die verschiedenen Wellenlängen nur mehr oder weniger gut durchgelassen. Die auf diese Weise veränderten Intensitäten der einzelnen Wellenlängen des ehemals weißen Lichts erscheinen jetzt farbig.

Hier treten die Farben allerdings auch ohne Polarisationsfilter auf. Das liegt daran, dass das teilweise polarisierte Himmellicht auf der Wasserschicht reflektiert wird. Blickt man unter einem bestimmten Winkel, dem sogenannten Brewster-Winkel auf die Wasseroberfläche, so sieht man hauptsächlich die senkrecht zur Einfallsebene reflektierten polarisierten Anteile. Das Licht ist also linear polarisiert wie beim Durchgang durch den Filter.

Der kreiselnde Fall

Der rotierende Torus fällt. Aber es dauert lange bis er danieder liegt und mit seinem Schatten zusammenfällt. Für mich enthält diese Bewegungsfigur eine große Symbolkraft.

Staubflusen – die kleinen Helfer.

Staub zeichnet sich dadurch aus, dass er kaum sichtbar sich auf alle Gegenstände niederlässt. Da Staubteilchen nur eine äußerst geringe Masse haben, ist wegen der Flächen-Volumen-Relation die Reibungskraft der Luft so groß, dass sie nur langsam sinken aber auch umgekehrt durch leichte Luftbewegungen wieder aufgewirbelt werden können.
Letzlich landet der meiste Staub auf waagerechten Flächen vor allem auf dem Fußboden. Dennoch verfügen diese Flächen über kleine Helfer, die angetrieben durch leichte Luftbewegungen einen großen Teil des Staubs einsammeln – die Flusen. Flusen setzen sich aus Haaren winzigen Resten von Textilien und ähnlichen Strukturen zusammen und haben die Eigenschaft anziehend auf den ordinären Staub zu wirken. Sie nehmen die kleinen Körnchen, die sich oft in ihrer Winzigkeit verstecken, bereitwillig auf und wachsen dadurch so stark an, dass sie schließlich nicht mehr übersehen werden können. Ein Bekannter von mir verriet mir, dass er diese kleinen „Staubsauger“ sehr schätze. Wenn sie eine bestimmte Größe erreicht hätten, brauchte er sie nur noch einzusammeln. Das sei schnell getan, geräuschlos und auch noch interessant. „Was du da für eindrucksvolle Strukturen zu sehen bekommst – einfach eindrucksvoll und vor allem Zeugnisse von der Kreativität der Natur“.
Mir ist zwar (noch) nicht ganz klar, welche Anziehungskräfte hier im Spiel sind, aber ich vermute, es sind elektrostatische. Aber davon vielleicht später.

Morbide Schönheit

Pilze beeindrucken mich immer wieder auf überraschend neue Weise. Im vorliegenden Fall sprießt aus dem Stamm eines gesundheitlich bereits angeschlagenen Baums ein ganzes Bündel eines Pilzes hervor, das wie ein üppiger Blumenstrauß wirkt und den Ernst der Situation zu konterkarieren scheint.
Im näheren Umfeld hat bereits die Trockenheit der letzten Jahre gewütet und einen Kahlschlag bewirkt. Der stehengebliebene Baum war wohl so etwas wie die Hoffnung eines Neuanfangs. Nun zeigt sich mit aller Zwiespältigkeit der wuchernden Schönheit, dass auch für diesen Baum – trotz des Schmucks – die Zukunft fragwürdig geworden ist.

Spannendes vom Spinnennetzbau

Spinnen haben das Problem, ihre Netze so zu bauen, dass sie immer schön gespannt bleiben. Bei festen Begrenzungen muss das Netz von Zeit zu Zeit nachgespannt werden, wenn es durch äußere Einflüsse an Spannung und damit an Tauglichkeit für den Beutefang eingebüßt hat.
Im vorliegenden Fall (siehe Foto) ist die Spinne sehr clever zu Werke gegangen. Sie hat ihr Netz in die Krümmung eines langen Grashalms eingebaut. Dabei hat sie den Grashalm über die natürliche, schwerkraftsbedingte Krümmung hinaus durch die Radialfäden ihres Netzes gespannt, sodass die dadurch hervorgerufene rückwirkende Kraft des Halms umgekehrt das Netz unter Spannung hält.
Wird durch irgendwelche äußeren Einwirkungen, z.B. dem Aufprall einer dicken Fliege, das Spinnennetz gedehnt, so wird dadurch der Halm weiter gespannt und zieht in der nachfolgenden Entspannung das Spinnennetz wieder straff.
Tolle Erfindung unter Einbeziehung örtlicher Gegebenheiten – funktional und naturschön.

Dennoch ist in diesem Netz nicht alles in Ordnung. Durch die Tautröpfchen an den Fangfäden und vermutlich der vorangegangenen Einwirkung von Wind haben sich zahlreiche Fadenabschnitte berührt verbunden. Das dürfte für die ordnngsmäßige Funktion des Netzes im Sinne der Spinne nicht garade förderlich sein.

Kooperierende Bäume

Bei Wanderungen in Wäldern schaue ich mir gern Bäume an, die nicht so ganz der Norm entsprechen. Die befinden sich meist dort, wo sie so wachsen dürfen wie sie wollen, also außerhalb oder am Rande der wirtschaftlich genutzten Waldbereiche. Ich habe diesem Blog bereits zahlreiche Exemplare anvertraut (z.B. hier und hier und hier und hier und hier). Sie sind oft so merkwürdig, dass es schwerfiele zu glauben, dass es so etwas gibt, hätte man es nicht direkt vor Augen.
Auf einer vor kurzem unternommenen Wanderung in den Dammer Bergen fand ich eine Baumgruppe vor, in der zwei Bäume über einen oberarmdicken Ast in Verbindung stehen. In den Fotos ist das Phänomen aus zwei verschiedenen Perspektiven zu sehen.
Schaut man sich das rechte Foto an, so scheint der linke Baum deutlich von der zusätzlichen Verbindung mit dem anderen Baum zu profitieren. Denn oberhalb der Einmündung dieses fremden Asts weitet sich der Stamm ganz entgegen der Norm, wonach Bäume unten dicker als oben sind.
Anders als bei den bisher entdeckten Baumverbindungen fällt mir hier keine plausible Geschichte ein, wie diese Verbindung wohl angebahnt und realisiert wurde. Vielleicht habt ihr eine Idee?

Bildschöne Schmelzwassertümpel im Nordpolarmeer

Beim Flug über das arktische Meereis war ich beeindruckt von der Schönheit der Strukturen im Eis. Was aus dem Flugzeugfenster wie kleine blaue bis zuweilen auch schwarze Tierchen mit langem Ringelschwanz aussah (linkes Foto), waren Süßwassertümpel (rechtes Foto), die in den Sommermonaten durch das Sonnenlicht in die Eisschicht hineingeschmolzen werden. Da die Eisschollen weitgehend aus Süßwasser bestehen, enthalten diese Tümpel ebenfalls Süßwasser.
Doch die Schönheit dieser Seen ist trügerisch. Zwar gibt es diese Tümpel schon lange, aber im Zuge der Klimaerwärmung nimmt ihre Zahl zu und das ist fatal. Denn diese azurblauen bis schwarzen Seen absorbieren mehr Sonnenenergie als die wasserfreien oft schneebedeckten Flächen, die das Licht hauptsächlich reflektieren. Damit wird aber das Abschmelzen des Eises beschleunigt.
Ein wesentlicher Grund für die Zunahme der Tümpel liegt nach Untersuchungen des Alfred-Wegener-Instituts darin, dass nicht nur die Polareisflächen abnehmen, sondern die Eisschichten jünger und dünner sind. Junges Eis ist glatter als das ältere, das durch Schollenbewegungen und Zusammenstöße rau und zerklüftet ist. Und da sich das Schmelzwasser auf der glatten Oberfläche besser verteilen kann, bilden sich Netze aus vielen Tümpeln.

Zuneigung auf dem Wasser

Man kann es nicht übersehen, die beiden Heftzwecken zeigen eine deutliche Zuneigung zueinander und das in einer äußerst ungewöhnlichen Situation. Denn sie hocken beide auf dem Wasser und das in einer Mulde.
Ist das nicht merkwürdig? Die Heftzwecken bestehen aus Eisenblech. Eisen hat eine größere Dichte als Wasser und müsste untergehen. Außerdem hat Wasser schwerkraftsbedingt eine ebene, glatte Oberfläche – zumindest, wenn kein Wind weht. Hier aber ist es durch die schweren Heftzwecken deutlich eingedellt.
Noch kurioser wird es, wenn wir in nicht allzu großer Entfernung von der einsamen Zwecke eine Zweite zu Wasser lassen. Die Zwecken bewegen sich aufeinander zu mitsamt ihrer Delle und vereinigen sich, wie man es auf dem Foto sieht – mit offensichtlicher Zuneigung. Das traute Glück lässt sich jedoch leicht stören. Ein paar Tropfen Spüli und ab gehts auf den Grund des Gewässers.

Darüber kann man sich freuen und vielleicht auch wundern. Aber man kann auch versuchen es zu verstehen, indem man den Zwecken zunächst einmal jegliche Art eigener Entscheidungen abspricht und damit physikalisch wird. Bei der Beschreibung haben wir nämlich eines außer Acht gelassen. Die Wasseroberfläche wird nicht nur durch die Schwerkraft bestimmt, sondern auch durch die Oberflächenspannung. Diese äußert sich anschaulich gesprochen darin, dass Wasser so etwas wie ein feines Häutchen hat. Das spielt zwar im großen und ganzen kaum eine Rolle, aber wenn man in kleinerer Dimension von Heftzweckgröße wandelt, macht sich das Häutchen deutlich bemerkbar.
Um eine Heftzwecke auf dem Wasser zu platzieren, muss man es ganz vorsichtig am Dorn fassend auf dem Wasser platzieren. Dann geht es seiner größeren Dichte entsprechend ein wenig unter aber ohne die Oberfläche zu durchstoßen. Denn durch die Eindellung des Wassers wird die Wasseroberfläche vergrößert. Dazu ist aber Oberflächenenergie nötig. Da die Natur unter den gegebenen Bedingungen geneigt ist, soviel wie möglich Energie an die Umgebung abzugeben und daher in diesem Fall die Oberflächenenergie so klein wie möglich zu halten, wird eine rückwirkende Oberflächenkraft aktiviert, die die Gewichtskraft der Zwecke ausgleicht. Das geht natürlich nur in einem ganz engen Rahmen. Ein Eurostück würde man so nicht zum „schwimmen“ bringen.
Die zweite Heftzwecke verhält sich wie die erste. Auch sie dellt die Wasseroberfläche gegen die Minimierungstendenz der Oberflächenenergie ein. Sobald die beiden Dellen sich nahe genug kommen, bewegen sie sich aufeinander zu und formen eine gemeinsame Delle. Die Dehnung der Wasseroberfläche durch diese Summendelle ist kleiner als die beiden einzelnen. Auf diese Weise kann Oberflächenenergie gespart, d.h. an die Umgebung abgegeben werden. Und genau das passiert hier.
Wenn man die Oberflächenspannung durch ein paar Tropfen Spülmittel vermindert, reicht die rückwirkende Kraft nicht mehr aus. Also das Phänomen ist in der Tat merkwürdig, aber nur im ursprünglichen Wortsinn – würdig gemerkt zu weren.

Es sind nur Tropfen…

Um die Schönheit solcher Tropfen genießen zu können, muss man sich auf das Niveau der Grashalme herablassen. Weil die Kamera oder das Auge den Tropfen in den Fokus nimmt, verschwimmt die Welt dahinter in einem Einerlei von Grüntönen. Aber die Strukturen gehen einem nicht ganz verloren, weil der Tropfen zumindest einen Teil des aus dieser Hinterwelt kommenden Lichts wie eine Lupe fokussiert und auf diese Weise die schon dem Blick verloren geglaubten Gräser mit einiger Schärfe wieder rekonstruiert. Das Ergebnis eines solchen Wechsels zwischen scharf und unscharf ist vermutlich ein weiteres ästhetisches Detail, das vielleicht unbewusst zur Schönheit des Gesamteindrucks beiträgt.
Es gibt aber auch noch kleinere Tropfen, die selbst in dieser Vergrößerung nicht mehr in allen Details zu erkennen sind. Sie kommen aber dem Ideal einer Kugel näher als die größeren.
Wieso sind kugelförmige Tropfen ein Ideal? Eine Antwort auf die Frage sind physikalische Prinzipien, denen sich auch die winzigen und daher kaum bemerkten Tropfen nicht entziehen können.
Die Wassertropfen stehen gewissermaßen unter dem Zwang die Kugelgestalt anzunehmen, weil das Volumen einer Portion Materie in Form einer Kugel von der kleinstmöglichen Oberfläche begrenzt wird. Damit wäre aber auch die zur Oberfläche proportionale Oberflächenenergie minimal. Und da jedes (abgeschlossene) System auf dieser unserer Welt so beschaffen ist, dass es so viel Energie wie unter den jeweils gegebenen Umständen möglich an die Umgebung abgibt, wäre damit diesem sogenannten Entropieprinzip Genüge getan.
Aber ein Tropfen ist nicht allein auf dieser Welt, er unterliegt folglich äußeren Einflüssen, die eine ideale Kugelgestalt der Wassertropfen unmöglich machen. Wir sehen also im Grunde so etwas wie energetische Kompromisse – aber sie sind es, die die Welt vielfältig, anregend und schön erscheinen lassen.

Strukturbildung beim Wasserfall

Alle Gegenstände und Medien, also auch Wasser, tendieren dazu die unter den gegebenen Umständen mögliche tiefste Lage einzunehmen. Dahinter steckt das natürliche Prinzip (2. Hauptsatz der Thermodynamik), soviel Energie wie möglich an die Umgebung abzugeben. Das Ergebnis wäre eine ebene Wasseroberfläche. Aber dazu kommt es im vorliegenden Fall gar nicht erst, weil der Behälter eine Öffnung hat, durch die das Wasser der gleichen Tendenz folgend in das nächst tiefere Becken fällt.
Aber selbst beim Fallen des Wassers gibt es eine Möglichkeit, Energie an die Umgebung abzugeben, indem die Oberfläche, zu deren Ausbildung verhältnismäßig viel Energie nötig ist, verkleinert wird. Doch auch dieser Prozess bleibt im Ansatz stecken, denn inzwischen hat das Wasser ein noch tieferes Becken erreicht.
Aber man kann immerhin erkennen, dass die fallende Schicht sich nach unten hin zusammenzieht mit der Tendenz Zylinderform anzunehmen. (Auch dazu würde es nicht kommen, wie ich in einem früheren Beitrag gezeigt habe).
Der nahezu freie Fall der Wasserschicht wird modifiziert durch Einflüsse der Ränder. Die sich beim schrägen Anstrom auf die Öffnungen aufwölbenden Wasserströme tendieren dazu, aus Trägheit ihre Richtung beizubehalten und führen in der unteren größeren Schale dazu, sich zu überkreuzen bevor sie abermals gestoppt werden und sich im Becken verwirbelnd zur nächsten Öffnung bewegen. Alle diese Vorgänge werden durch individuelle Einflüsse von Unregelmäßigkeiten an den Rändern u.Ä. überlagert und entsprechend modifiziert. Auf diese Weise entstehen naturschöne Wasserstrukturen.

Fast kugelförmig

Und ‘ne merkwürdige Ecke ist das ja: heut früh lag hinten, mitten im Waldgras – wo gestern Abend noch nichts gewesen war ! – eine Kugel von einem Fuß Durchmesser. Gelb pampig-schuppig; als Otje mit’m Stock drauf schlug, wuppte es büchsen, und stieß dann eine flache, matt-giftgründe Rundum-Staubwolke aus : „‘n Bovist ! – Jung sollen sie eßbar sein.“ Aber Otje, massiv=verächtlich : „‘Eßbar‘ bist letzten Endes auch – Du. – Falls De nich zu sehr nach Bock schmeckst.“*

An diese Passage Arno Schmidts wurde ich erinnert, als ich das schon ältere Exemplar des Staubpilzes von der Größe eines Fußballs halb unter einer Hecke verdeckt entdeckte. Mich hat vor allem die große Annäherung an die Kugelform beeindruckt, die in der Natur zwar angestrebt, aber nicht immer in dieser Deutlichkeit erreicht wird.
Die Bedeutung der Kugelform in der natürlichen und wissenschaftlich-technischen Welt liegt vor allem darin, dass die Oberfläche im Verhältnis zum Volumen minimal ist. Das spielt in zahlreichen physikalischen Zusammenhängen eine wichtige Rolle. Beispielsweise tendieren Wassertropfen und Seifenblasen zur Kugel, weil dabei maximal viel Oberflächenenergie an die Umgebung abgegeben werden kann. Die Abgabe von unter den gegebenen Umständen maximal viel Energie an die Umgebung (Entropiesatz bzw. 2. Hauptsatz der Thermodynamik zählt zu den wesentlichen Vorgängen in der Welt.


* Arno Schmidt. Kühe in Halbtrauer. In: Ausgewählt Werke 3. Berlin 1990, S. 49

Weinende Pflanzen

Mich beeindruckt immer wieder, wenn an einem trockenen Morgen, die Blätter einer Pflanze nichts besseres zu tun haben, als Flüssigkeit an die Umgebung abzugeben. Dieser als Guttation bezeichnete physiologische Vorgang ist eine Art Notfallprogramm der Pflanzen, seinen Säftehaushalt zu regulieren.
Weil ich mich immer wieder von diesen weinenden Pflanzen auch ästhetisch angesprochen fühle, möchte ich hier einmal mehr auf dieses Naturphänomen aufmerksam machen.

Wege 22: Von der Hydrophobie zur Hydrophilie

Wer sich am frühen Morgen anschickt, diesen Weg zu gehen, kann sich zwar über einiges freuen – die strenge Linearität in einer an sich nichtlinearen Umgebung – sozusagen als Kontrastprogramm, über den üppigen Bewuchs und eventuell weitere schöne Dinge.
Wer sich aber über das Anschicken und Anschauen hinauswagt und vielleicht wie ich mit dem Fahrrad über diese künstlich angelegte Piste flitzt, wird sich bestimmt ärgern. Ich habe mich geärgert. Denn nach einigen Metern war ich bis zu den Oberschenkeln so durchnässt, dass ich eine schnelle Trocknung in den Wind schreiben konnte, der an diesem Tage ziemlich selbstbewusst über das Land zog: Das Gras war so hydrophil, also Wasser liebend, dass es sich voll eingedeckt hatte, es aber auch – das muss ich zugeben – sehr großzügig mit meinen ebenfalls hydrophilen Hosenbeinen teilte. Ich wurde darob so hydrophob, dass der Elan, mit dem ich den Tag startete, vorerst verflogen war.
Das Wasser, das unfairerweise in meinen Hosenbeinen eine neue Heimat gefunden hatte, dachte gar nicht daran, zu verfliegen. Selbst als der Fahrtwind zu Hilfe kam und die Verdunstungsrate kräftig in die Höhe schnellen ließ, dauerte es eine ganz Weile, bis ein merklicher Teil verdunstet war.
Den energetischen Preis dafür musste ich obendrein bezahlen: Indem der Wind den durch Verdunstung entstandenen Wasserdampf abtransportierte, wurde die Verdunstungsrate stark angefacht – mit der unangenehmen Konsequenz, dass die dafür nötige Energie meinen Beinen durch Wärme entzogen wurde, was am frühen Morgen, wenn die Sonne noch nicht so richtig hochgekommen ist, hydrophobe Gedanken geradezu provoziert.
Bei stehender Luft bleibt der Wasserdampf erstaunlich lange in der Nähe seines Ursprungsortes – also meinen in den Hosenbeinen steckenden, im Unterschied zu diesen aber sehr empfindlich auf warm und kalt reagierenden Beinen. Ohne weitere Bewegung und damit ohne Wind hätten sich die nassen Hosenbeine auf Körpertemperatur erwärmt und auf diese Weise  zumindest eine mittelerträgliche Situation geschaffen. Aber wegen der großen Verdunstungswärme von Wasser hätte es sehr lange gedauert, bis eine merkliche Trocknung eingetreten wäre. Also verwarf ich diesen Gedanken, trat kräftig in die Pedalen und überließ dem Fahrtwind unter Ausnutzung meiner Körperwärme die Hosenbeine zu trocknen.
Der Tag wurde warm, er wurde sogar so warm, dass diesmal die Feuchtigkeit durch Schwitzen von meinen Beinen ausging und von den hydrophilen Hosenbeinen von der anderen Richtung aufgenommen wurde und im Fahrwind zu einer angenehmen Kühle führte. So startete ich an diesem Tag als Hydrophiler, wurden zwischendurch Hydrophober und kehrte schließlich wieder als Hydrophiler zurück. Diese Bekehrung war zwar nicht das einzige Highlight dieses Tagesausflugs aber ein sehr ungewöhnliches.



					
				

Alte und neue Technik

Der alte Pilsumer Leuchtturm ist lange im Ruhestand. Vor ihm dreht sich ein vergleichsweise gigantisches Windrad. Aber nicht nur das Alter und die Größe machen den Unterschied. Der Leuchtturm benötigte zu seiner Zeit Energie, um den Schiffen heimzuleuchten. Das Windrad erzeugt Energie und zwar um Größenordnungen mehr als der Leuchtturm verbrauchte. Der Größenunterschied ist hier auch visuell in Szene gesetzt.
Der Leuchtturm steht nicht nur auf dem Deich, sondern auch für eine längst vergangene Zeit. Das Windrad produziert erneuerbare Energie und dreht sich für eine neue Zeit. Es ist nicht das einzige an der deutschen Nordseeküste und findet daher kaum noch Beachtung. Der Pilsumer Leuchtturm ist einzig(artig) auf der Welt und genießt insbesondere bei Touristen große Beliebtheit und nicht erst seit Otto ihn in einem seiner Filme auftreten ließ.

Bestäubte Regentropfen

H. Joachim Schlichting. Spektrum der Wissenschaft 5 (2022), S. 77-78

Es regnete so stark, daß alle Schweine rein
und alle Menschen dreckig wurden

Georg Christoph Lichtenberg (1742–1799)

Auf Pflanzenblättern sammeln sich Pollen und anderer feiner Staub. Ein Regenschauer wirkt reinigend und hinterlässt manchmal Tropfen, die einiges über die physikalischen Vorgänge bei der Schmutzbeseitigung verraten.

Manche Pflanzen verteilen ihre Pollen so verschwenderisch, dass andere in ihrer Nachbarschaft regelrecht mit einer Schicht aus Blütenstaub eingedeckt werden. Das kann die betroffenen Blätter in ihrer Photosynthese einschränken. Zum Glück sorgen ab und zu Regenschauer wieder für klare Verhältnisse. An Wassertropfen, die an den Blättern hängenbleiben, kann man nachvollziehen, wie die Reinigungsvorgänge physikalisch ablaufen.

Das zeigt sich zum Beispiel an Maiglöckchen (siehe »Maiglöckchenblatt«). Nach einem heftigen Regenschauer sind bei anschließendem Sonnenschein auf waagerecht ausgerichteten, leicht konkaven Blättern einige liegen gebliebene Wassertropfen zu sehen. An dem größten von ihnen lassen sich die wesentlichen Aspekte des Reinigungsvorgangs rekonstruieren. Neben einer kleinen Spiegelung der Sonne fällt ein größerer heller Fleck auf der höchsten Stelle des Tropfens auf. Wie man an seinem Schatten auf dem Blatt erkennen kann, hat er einen materiellen Ursprung: eine nahezu kreisförmige Ansammlung von Pollenkörnern, die der Regen beim Gleiten über das ehemals bestaubte Blatt eingesammelt hat.

Wenn Regentropfen auf Bäumen oder anderen Pflanzen landen, hängt ihr Schicksal vor allem von der Beschaffenheit der Blattoberfläche ab. Bei wasserliebenden (hydrophilen) Flächen ist für eine gemeinsame Grenzfläche zwischen Wasser und Blatt weniger Energie nötig als zwischen Wasser und Luft. Die Tropfen breiten sich also möglichst ausladend auf dem Blatt aus. Bei wasserabweisenden (hydrophoben) Flächen muss hingegen verhältnismäßig viel Energie aufgebracht werden, und die gemeinsame Grenzfläche zwischen Blatt und Wasser bleibt daher vergleichsweise klein.

Ein Maß für die Benetzbarkeit ist der so genannte Kontaktwinkel, der sich zwischen Festkörper und Flüssigkeit einstellt. Von Hydrophobie spricht man, wenn er größer ist als 90 Grad. Das ist bei den Maiglöckchen offenbar der Fall. Insbesondere die kleinen Tropfen erscheinen fast kugelförmig. Bei ihnen macht sich der Einfluss der Schwerkraft weniger stark bemerkbar als bei den deutlich abgeflachten voluminöseren Exemplaren.

Sobald Regentropfen auf dem Maiglöckchenblatt landen, nehmen sie die Pollen auf, mit denen sie in Kontakt geraten. Die Pollen sind hydrophil und bleiben deswegen am Wasser haften. Interessanterweise versammeln sie sich entgegen der Schwerkraft an der höchsten Stelle der Tropfen und ordnen sich nahezu kreisförmig an.

Die Vorgänge lassen sich auf einfache Weise in einem Freihandexperiment nachvollziehen. Dazu füllt man ein Trinkglas vorsichtig so voll mit Wasser, dass es sich über den Rand hinaus aufwölbt – die Oberflächenspannung und die Hydrophilie des Glases verhindert ein Überlaufen. Die höchste Stelle des konvexen Wasserspiegels liegt dann in der Mitte. Gibt man nun einige Styroporkügelchen auf die Oberfläche, driften sie sofort dorthin und ziehen sich gegenseitig an (siehe mittleres Foto). Sie tendieren dazu, gemeinsam eine hexagonale Form mit minimalem Umfang anzunehmen. Bei einer größeren Anzahl kleiner Teilchen wie den Pollen erscheint das als Kreis.

Durch die Benetzung der Kügelchen werden diese ein wenig tiefer ins Wasser gezogen, als es ihrem Gewicht entspricht. Ähnlich wie bei einem im Schwimmbad herabgedrückten Ball provoziert das eine zusätzliche Auftriebskraft. Bei der erstbesten Gelegenheit nehmen die Teilchen daher die jeweils höchste Stelle ein. Deswegen wandern die Pollen am Tropfen und die Styroporkügelchen die gewölbte Wasseroberfläche im Trinkglas empor. Die gegenseitige Anziehung erfolgt aus demselben Grund. Sobald ein Teilchen in die Reichweite des konkaven Meniskus eines anderen kommt, steigen sie jeweils darin auf, bis nur noch eine schmale Wasserlamelle zwischen beiden besteht.

Der reinigende Effekt durch Staubpartikel einsammelnde Tropfen ist am stärksten bei hydrophoben Blättern ausgeprägt, also solchen, die von Wasser nur wenig benetzt werden. Da die Lotuspflanze das Phänomen besonders eindrucksvoll zeigt, spricht man auch vom Lotuseffekt. Er hat seine Ursache in einer besonderen mikroskopischen Struktur und wird häufig als Paradebeispiel für die Bionik genannt, bei der es darum geht, natürliche Phänomene technisch zu adaptieren. So reinigen sich speziell beschichtete Oberflächen bei einem Regenguss selbst.

Aber selbst bei hydrophilen Pflanzenblättern kann es bei größeren Schmutzansammlungen zu einer Art Hydrophobisierung kommen. Indem die aufprallenden Tropfen sich mit einer Staubschicht umgeben, haben die Blätter weniger direkten Kontakt zum Wasser, und die Hydrophilie nimmt ab. Den Effekt kann man ebenfalls durch ein einfaches Experiment nachvollziehen. Träufelt man etwas Wasser auf Bärlappsporen, so werden die Tropfen mehr oder weniger vollständig damit überzogen, während sie über das Puder kullern (siehe unteres Foto). Jetzt erfolgt der Kontakt mit dem Untergrund nur noch über die Staubhülle, und so werden die ummantelten Tropfen praktisch hydrophob. Sie rollen bei der kleinsten Neigung vom Blatt hinab und hinterlassen schließlich eine mehr oder weniger gesäuberte Unterlage.

Schönheit aus energetischer Sicht

Die beiden Steine sinken mit dem auf- und ablaufendem Wasser am Strand immer etwas tiefer in den Sand. Das geht langsam, die Natur hat Zeit. Infolge des immer wieder anströmenden Wassers wird der Stein unterspült und findet sich schließlich in einer kleinen Vertiefung wieder. Dieser Vertiefung strebt das im Sand gespeicherte Wasser zu. Aber es tut dies mit System. Nicht jede Wasserportion wählt ihren eigenen Weg, sondern den bereits von anderen gebahnten, wodurch ein kleines Rinnsal entsteht. Und dieses Rinnsal fließt in ein größeres und das größere Rinnsal in ein noch größeres. Warum so umständlich? Nur um dem Menschen einen naturschönen Anblick zu bieten? Das Wasser strebt auch hier wieder der tiefsten Stelle zu, weil dadurch Energie an die Umgebung abgegeben werden kann. Die bereits vorhandenen Rinnsale sind lokal gesehen die tiefsten Stellen.
Interessanterweise wird die Energie nicht irgendwie, sondern auf – ich möchte sagen – „ökonomische“ Weise abgegeben, indem pro Zeiteinheit so wenig Energie wie möglich an die Umgebung übergeht.
Das Ergebnis sind Strukturen, die in den meisten Fällen von den Menschen als geordnet oder ästhetisch ansprechend empfunden werden.

Eine physikalische Vertiefung dieser Überlegungen findet man hier.

Wärmestrahlung beim Osterfeuer

Flammen lodern züngelnd nach oben, brennendes Holz knistert, Funken sprühen in wilden Wirbeln hoch über dem Feuer, Gesichter glühen im Schein der Flammen und der Wärmestrahlung. Die Menschen erleben in der Betrachtung des Osterfeuers eine der elementaren Urgewalten und lassen sich mehr oder weniger innerlich beteiligt von den dadurch ausgelösten Gedanken und Gefühlen forttragen.

Das Osterfeuer gilt den Christen als ein Symbol für die Auferstehung von Jesus Christus. Aus einigen Quellen geht aber auch hervor, dass mit dem Licht der Winter und die dunkle Jahreszeit verabschiedet oder ausgetrieben werden.

Auf dem Foto fällt auf, dass sich die Flammen in heller Aufruhr befinden. Links oben scheint sich ein Flammenfragment selbständig zu machen und das Weite zu suchen. Daran kann man zweierlei erkennen. Zum einen wird deutlich, dass für die Flamme – zumindest für kurze Zeit – keine direkte Verbindung zum brennenden Holz nötig ist. Denn nicht das Holz an sich brennt, sondern die abgegebenen brennbaren Gase. Zum anderen sieht man nur den Teil der Flamme, der für uns sichtbares Licht abgibt. Das ist erst bei  Temperaturen oberhalb von etwa 700° C der Fall.
Beim Osterfeuer wird außerdem der Einfluss der Wärme durch Strahlung fühlbar. Es ist also weniger die erwärmte Luft, die uns zwangsläufig auf einen Sicherheitsabstand zum Feuer bringt, sondern vor allem die Wärmestrahlung. Die in der ersten Reihe zum Feuer hin stehenden Menschen, spüren dies besonders stark und wechseln bald in eine weiter hinter liegende Reihe. So bringt die Strahlungswärme zumindest die ersten Reihen in eine ständige „Konvektionsbewegung“. Erhitzte Menschen gehen nach hinten, kühle Menschen geraten nach vorn, bis auch sie wieder nach hinten wechseln und so weiter… Menschen sind eben auch nur Moleküle.

Physik im Alltag – Seltsame Phänome und ihre Erklärungen

H. Joachim Schlichting. Spektrum der Wissenschaft Spezial 1.22 (2022) 82 Seiten

Physikalischer Reiz des Gewöhnlichen
Die Menschen haben von jeher die Natur nicht nur wahrgenommen, sondern die Natur auch auf die eine oder andere Weise zu verstehen versucht. Aus heutiger Perspektive erstaunlich tief gehende physikalische Einsichten hat bereits Leonardo da Vinci vor mehr als 500 Jahren bei seinen zahlreichen Beobachtungen und zeichnerischen Rekonstruktionen bewiesen. Damals war die neuzeitliche Physik noch im Entstehen begriffen, sodass man nur darüber staunen kann, wie klar und verständlich Leonardo viele Alltagsbeobachtungen dargestellt hat. Die Kunst kam ihm bei der grafischen Rekonstruktion der Phänomene sehr zugute (S. 6).
Physik und Kunst haben sich von jeher gegenseitig befruchtet und zahlreiche Erscheinungen inspirieren oft durch ihren ästhetischen Reiz dazu, sie näher zu erschließen.
Aber selbst profan wirkende Vorgänge führen manchmal erstaunlich weit bis in die moderne Forschung.
So ist es eine alltägliche Erfahrung, Schnecken auf ihrem glitschigen Schleimfilm gleiten zu sehen. Denkt man jedoch an die eigenen Fortbewegungsprobleme (S. 40), drängen sich Fragen geradezu auf. Wie stellt es die Schnecke an, bergauf zu gleiten oder sich überhaupt vom glitschigen Schleim abzustoßen? (S. 64).
Die wissenschaftliche Antwort führt direkt in die Küche, in der wir es mit ähnlichen Problemen zu tun haben, wenn beispielsweise der Ketchup aus der Flasche wohldosiert auf dem Teller landen soll (S. 72). Flüssigkeiten können je nach mechanischer Einwirkung zwischen zäh- und leichtflüssig wechseln. In Form von Schaum ähneln manche Gemische sogar einem Festkörper (S. 70). Selbst reines Wasser zeigt oft faszinierende Strukturen und überraschende Schauspiele. Es ist sogar musikalisch: Spült man nach der Teepause sein Edelstahlsieb, so bekommt man zuweilen schöne Töne zu hören. Dahinter steckt ein komplexer Vorgang, der erst zum Mysterium wurde, seitdem es diese Teesiebe gibt (S. 78). Andere Strömungsereignisse sind altbekannt, aber nicht weniger imposant und fordern geradezu dazu heraus, selbst ausprobiert zu werden.
Lassen Sie sich durch diese Sammlung inspirieren, fortan den Alltag mit neuen Augen zu sehen.

Ihr H. Joachim Schlichting.

Ein Stein schafft sich ein naturschönes Ambiente

Wo bislang eine unansehnliche Wasserpfütze den Wanderweg blockierte, hatte sich gestern mit Hilfe des nächtlichen Frosts ein naturschöner Anblick entfaltet. Ausschlaggebend für die Entwicklung dieser individuellen Eisstruktur ist ein Stein, der beim Zufrieren der Pfütze ganz zu Beginn die entscheidenden Strukturimpulse gibt. Sie sind hier als radial vom Stein ausgehende Eiskristalle zu sehen, die gewissermaßen das Fachwerk abgeben, dessen Zwischenräume ganz zum Schluss zufrieren. Weiterlesen

Der Tanz ist realer als die Atome

Was ist also dieses Gehirn, was sind all diese Atome mit Bewußtsein? Schnee von gestern! Nur deshalb können wir uns daran erinnern, was uns ein Jahr zuvor durch den Kopf gegangen ist – durch einen Kopf, in dem inzwischen längst alles völlig erneuert ist. Genau das bedeutet nämlich die Erkenntnis, wie lang es dauert, bis alle Atome des Gehirns durch andere ersetzt sind: daß meine Individualität nur ein Muster ist, ein Tanz. Die Atome kommen in mein Hirn, machen ihr Tänzchen und gehen dann wieder. Immer andere Atome, aber stets der gleiche Tanz, und immer mit der Erinnerung daran, wie der Tanz gestern ausgesehen hat.*

Der Physiker Richard Feynman (1918 – 1988) bringt hier auf anschauliche Weise zum Ausdruck, dass aus der reduktionistischen Perspektive der Physik die abstrakten Muster der aus den realen Dingen aufgebauten Welt entscheidend sind für das was wir als Wirklichkeit empfinden. Man weiß, dass durch unseren Stoffwechsel – die körperliche Kommunikation mit der Umwelt – die Moleküle unseres Körpers ständig ersetzt werden. So wird beispieslweise unsere Leber in wenigen Wochen durch neue Materie ersetzt. (Leider wird dabei auch eine mögliche Krankheit mit repoduziert).
Was bleibt und was bedeutet es, wenn unser Körper nach einiger Zeit materiell ersetzt/erneuert wurde, die Erinnerung an Kindheitserlebnisse, an den ersten Kuss oder auch an einen Unfall… davon völlig unberührt bleibt?
In der Physik ist es nicht anders. Entscheidend sind die Muster, die Kräfte, die Tänze, die das Verhalten der materiellen Dinge, der Elementarteilchen etc. bestimmen. Und das gilt es zu beschreiben und zu verstehen.


* Richard Feynman, z.n.: K. C. Cole. Warum die Wolken nicht vom Himmel fallen. Berlin 2000; S. 183


Eisstrukturen zwischen Mangel und Überfluss

Sprießende Spitzen: Vor allem an den winzigen unterkühlten Blattseiten wachsen Eiskristalle, indem sie vorbeidriftende Wasserdampfmoleküle einsammeln.

H. Joachim Schlichting. Spektrum der Wissenschaft 2 (2022)

Es waren Myriaden im Erstarren zu ebenmäßiger Vielfalt kristallisch
zusammengeschossener Wasserteilchen.

Thomas Mann (1875–1955)

In kalten Nächten wachsen oft weit verzweigte Eiskristalle heran. Wo und wie sie genau entstehen, hängt vor allem von den lokalen Gegebenheiten ab.

Zwar verlieren Pflanzen im Winter ihre Blütenpracht, doch dafür sprießen an ihnen filigrane, dendritische Eiskristalle und bieten einen schönen und physikalisch interessanten Ersatz. Damit solche Strukturen entstehen können, ist neben tiefen Temperaturen aber auch Wasser nötig.

In einer trockenen und wolkenfreien Nacht kann reichlich davon anfallen. Das ist uns bereits aus den wärmeren Jahreszeiten vertraut: Nicht selten sind am frühen Morgen Blätter und andere Gegenstände mit zahlreichen, bei Sonnenschein glitzernden Tautröpfchen benetzt. Durch Abstrahlung von Energie zum dunklen Himmel fällt die Temperatur der Objekte; Luft in deren Nähe kühlt ebenfalls ab. Damit sinkt die maximal mögliche Konzentration des darin enthaltenen Wasserdampfs (maximale Feuchte). Unterschreitet sie die aktuell vorhandene absolute Feuchte, kondensiert das überschüssige Wasser. Die Temperatur, bei der das passiert, heißt Taupunkt.

Kleinere und flachere Gebilde wie Grashalme und Blätter kühlen stärker ab. Denn einerseits ist die pro Zeiteinheit abgestrahlte Energie in etwa proportional zur Größe der Oberfläche, andererseits ist die gespeicherte innere Energie proportional zum Volumen. Wenn r für eine typische lineare Größe eines Gegenstands steht, etwa seinen Radius, dann schrumpft seine Oberfläche proportional mit r^2, sein Volumen aber mit r^3. Wird das Objekt beispielsweise um den Faktor 10 verkleinert, so verringert sich seine Oberfläche um das 100- und sein Volumen um das 1000-Fache. Also nimmt die zu Letzterem proportionale innere Energie stärker ab als die Oberfläche – und mit der inneren Energie ist wiederum die Temperatur verbunden.

Im Winter sind die Verhältnisse nicht grundlegend anders, nur liegt der Taupunkt gegebenenfalls unterhalb des Gefrierpunkts. Dann wird der überschüssige Wasserdampf gar nicht erst flüssig, sondern gefriert an den eiskalten kleinen Strukturen direkt zu Kristallen (Resublimation). Um vom gasförmigen in den festen Zustand überzugehen, benötigen die Wassermoleküle Unterstützung in Form von so genannten Keimen. Das sind meist winzige Partikel, an denen die Kristallisation leichter gelingt als beispielsweise im freien Raum. Der ideale Keim ist ein bereits existierender Eiskristall, und daher wachsen eher vorhandene Exemplare als neue entstehen.

Auf einem Blatt entwickeln sich die ersten Eisstrukturen bevorzugt an dünnen Härchen und anderen winzigen Auswüchsen (siehe »Sprießende Spitzen«). Sie sind nicht nur besonders kalt, sondern ragen oft außerdem ein Stück weit in die Umgebung hinein, die von Wasserdampfmolekülen wimmelt. Deren Verfügbarkeit ist zudem einer der Gründe dafür, dass die entstehenden Eisnadeln meist nicht in beliebige Richtungen wachsen, sondern von ihrer Basis weg ins Freie. Dabei spielt ein weiterer Aspekt eine wichtige Rolle: Bei der Resublimation fällt Energie aus Kondensationswärme und Kristallisationswärme an. Nur, wenn sie genügend schnell weggeschafft wird, kann Dampf tatsächlich erstarren.

Hexagonale Blättchen: Über Buschwerk, das tagsüber von der Sonne aufgeheizt wurde, wachsen nachts flächige Eiskristalle mit einem typischen Durchmesser von einem Zentimeter.

Haben die Spitzen eine bestimmte Länge erreicht, können Seitenzweige schräg nach oben austreiben, weil ihre Flanken jetzt genügend weit von der Basis entfernt sind. So ergeben sich die dendritischen Strukturen gewissermaßen zwangsläufig.

In der Natur sind vielfältige Eiskristallmuster zu beobachten. Das spiegelt die zahlreichen Möglichkeiten wider, die sich durch die Geometrie der Objekte, die jeweils herrschenden Temperaturverhältnisse, den Nachschub an Wasserdampfmolekülen sowie die Entsorgung der Abwärme ergeben.

Die bislang erläuterten Strukturen entsprechen Verhältnissen mit eingeschränkter Versorgung mit Material und begrenztem Abführen der Kristallisationswärme. In Situationen, in denen reichlich Wasserdampf vorhanden ist und die Wärme optimal abtransportiert wird, gibt es eine ganze Klasse weiterer Eisstrukturen. Sie sind großflächig und dicht. Bei ihnen schlägt sich der Einfluss der hexagonalen Symmetrie der mikroskopischen Wassermoleküle auf die makroskopischen Muster besonders deutlich nieder.

Baumartig: Eiskristallstrukturen treten an manchen Stellen lamellenartig gestaffelt auf.

In einem Fall (siehe »Hexagonale Blättchen«) war der Ausgangspunkt der Strukturbildung eine Schneedecke, die sich großflächig über niedriges Buschwerk gelegt hatte. Tagsüber heizte die intensiv strahlende Sonne den dunklen Raum darunter auf – eine feuchtigkeitsgesättigte Atmosphäre entstand. In der anschließenden sternklaren Nacht kühlte sich die obere Schneeschicht stark ab. Von unten stiegen verhältnismäßig warme Luft und Wasserdampf auf. Letzterer schlug sich im Bereich des Schnees nieder und erstarrte. Bei so einer Konstellation wird die Kristallisationswärme leicht in den kalten Nachthimmel abgestrahlt. So füllen sich beim Emporwachsen selbst die Zwischenräume problemlos. In nur einer Nacht können auf diese Weise lamellenartige Strukturen entstehen, die teilweise wie nach oben offene Gefäße aussehen und an manchen Stellen wie Kühlrippen gestaffelt sind. Letztere Ähnlichkeit ist mehr als rein äußerlich, schließlich kommt es gerade bei üppiger und effektiver Produktion von Kristallstrukturen weiterhin darauf an, die Wärme optimal abzugeben. So sind auch die typischen weihnachtsbaumartigen Muster (siehe »Baumartig gestaffelt«) weniger eine ästhetisch ansprechende Laune der Natur, als vielmehr eine physikalische Notwendigkeit.

Rätselfoto des Monats Februar 2022

Wie kommt es zu den Strukturen im Eiszapfen?


Erklärung des Rätselfotos des Monats Januar 2022
Frage: Wie kommt es zu den weißen Nadeln?
Antwort:
Diese filigranen und gegen Berührung sehr sensiblen Kunstwerke der Natur entstehen, wenn die Temperatur einige Grade (-8 °C) unter Null liegt und die Wasserdampfkonzentration sehr hoch ist (relative Feuchte über 90%).
In der Nähe von kalten Gegenständen überschreitet die relative Feuchte 100 % und die überschüssigen Wasserdampfmoleküle tendieren unter derartigen Bedingungen dazu, sich an kalten Gegenständen niederzulassen und sich auf diese Weise am Aufbau von Eiskristallen zu beteiligen (Resublimation). Am günstigsten sind die Stellen, an denen sich bereits kleine Kristalle befinden. Daran docken die Moleküle an und die Kristalle wachsen wie in diesem Fall meist nadelartig nach außen dem Nachschub entgegen. Dieser wird mit dem Wind herbeigeführt.
Eis ist an sich transparent. In Form winziger Kristalle reflektiert es die von den Objekten ausgehenden Lichtstrahlen jedoch in alle Richtungen, sodass die nachbarschaftlichen Beziehungen zwischen ihnen verlorengehen und damit die Transparenz durch ein zauberhaftes Weiß ersetzt wird (Lichtstreuung).

Entropie – das mephistophelische Prinzip?

Dadurch dass die Sonne zerstrahlt und dadurch u. A. Pflanzen wachsen lässt, wird ihr Zerfall immer wieder partiell zurückgespult.

Im Anschluss an meine Erinnerung an den „Erfinder“ der Entropie habe ich erstaunlich viele Reaktionen erhalten. In fast allen überwog der Gedanke, dass das Entropieprinzip doch als negativ einzuschätzen sei, weil es letztlich den Wärmetod der Welt bedeute. Ohne noch einmal auf die physikalischen Hintergründe zu sprechen zu kommen (das habe ich in an anderer Stelle getan), möchte ich ganz kurz einige Aspekte des ideengeschichtlichen Kontexts skizzieren, die vor allem zu der Zeit diskutiert wurden, als das Entropieprinzip in der Physik eingeführt wurde.
Wie kaum ein anderes physikalisches Konzept ist die Energie in die Alltagswelt der Menschen abgesunken. In Form von elektrischem Strom, Benzin und anderen Brennstoffen sowie im Zusammenhang mit den zugehörigen energietechnischen Einrichtungen hat die Energie inzwischen alle Lebensbereiche durchdrungen. Die Bedeutung der Energie über die Physik hinaus wurde schon sehr früh erkannt und der Aufbruchstimmung in der zweiten Hälfte des 19. Jahrhunderts gemäß zuweilen mit schwärmerischen Worten beschrieben. So verehrt beispielsweise der Physiker Felix Auerbach (1856 – 1933) „die Energie als Göttin, als Königin hier gebend und dort nehmend, im ganzen aber weder gebend noch nehmend, (die) sich über allem, was sich im unendlichen Raume, im Strome der dahinfließenden Zeit abspielt thront“. Aber es wird auch nicht übersehen, dass die Energie trotz ihrer Erhaltung von der Entropie bedroht wird. Sie ist für Auerbach „der Schatten, der böse Dämon, der zu beeinträchtigen, wenn nicht gar zu verderben suchen wird, was der strahlende Dämon (also die Energie, H. J. S.) in das Dasein an Großem: Schönem und Gutem hineinzutragen sich bemüht“ *. Schon bald ist vom Wärmetod der Welt die Rede, auf den wegen der Entropieerzeugung alles zustrebe.
Diese Auffassung bestimmt auch heute noch weitgehend die Einstellung zur Entropie. Dabei wird jedoch übersehen, daß nicht die in ihrer Quantität ewig unveränderliche Energie als treibende Kraft allen Geschehens anzusehen ist, sondern gerade der böse Dämon, die Entropie, die alles zugrundezurichten trachtet. Man wird an Goethes Mephisto erinnert, der die Hölle des Wärmetods auf ganz ähnliche Weise herbeizuführen versucht:
Ich bin der Geist, der stets verneint!
Und das mit Recht, denn alles was entsteht,
Ist wert, das es zugrundegeht
. (Faust I)
Dabei wird sein Tun aber auch an anderer Stelle gewürdigt, indem resümiert wird, er sei
ein Teil von jener Kraft,
Die stets das Böse will
und stets das Gute schafft
…(Faust I)
Mit anderen Worten: Aufwertung, Ordnung, Struktur … ist nur durch Entwertung, Dissipation, Zerfall… möglich. Oder wie Goethe es in einem Gedicht Eins und Alles ausdruckstark formuliert hat:
Denn alles muß in Nichts zerfallen,
wenn es im Sein beharren will.
Darin kommt ein wesentlicher Zug unserer Existenz zum Ausdruck, den Voltaire in dem Satz
Tout est dangereux ici bas,
et tout est nécessaire“
(Zadig).
Mit anderen Worten: Das Leben wird aufrechterhalten durch das, was ihm auch tödlich werden kann.
Diese Aussage kann auch physikalisch durchaus wörtlich genommen werden. Dazu muss man sich nur vergegenwärtigen, daß beispielsweise die Atmung, eine der Lebensäußerungen schlechthin, einen Zerfallsprozess darstellt. Die Atmung bedingt, daß die organischen Nahrungsmittel (beispielsweise Glukose) in ihre anorganischen Bestandteile zerfallen und auf diese Weise die Lebensvorgänge des Organismus in Gang halten:

[CH20]6 + 6 02 –> 6 H20 + 6 C02 + Energie.

Das funktioniert natürlich nur so lange, wie dafür gesorgt wird, daß auch dieser Vorgang immer wieder in Form der Fotosynthese zurückgespult wird. Dafür ist grob gesagt der globale irreversible Zerfallsvorgang verantwortlich, aufgrund dessen Sonnenlicht (bei hoher Temperatur) auf die Erde fällt und diese schließlich (bei Umgebungstemperatur) wieder verlässt, eine Tatsache, die bereits Ludwig Boltzmann um die Wende zum 20. Jahrhundert erfasste:

Der allgemeine Daseinskampf der Lebewesen ist nicht ein Kampf um die Grundstoffe…, auch nicht um Energie, welche in Form von Wärme leider unwandelbar in jedem Körper reichlich enthalten ist, sondern ein Kampf um die Entropie, welche durch den Übergang der Energie von der heißen Sonne zur kalten Erde disponibel wird. Diesen Übergang möglichst auszunutzen, breiten die Pflanzen die unermeßliche Fläche ihrer Blätter aus und zwingen die Sonnenenergie…, ehe sie auf das Temperaturniveau der Erdoberfläche herabsinkt, chemische Synthesen auszuführen…Die Produkte dieser chemischen Küche bilden das Kampfobjekt für die Tierwelt.**

Der Zerfallsprozess (1) wird also zurückgespult:

Sonnenergie + 6 H20 + 6 C02 –> [CH20]6 + 6 02 .


* Felix Auerbach. Die Weltherrin und ihr Schatten. -Jena: Fischer 1913, S.1
** Ludwig Boltzmann. Der zweite Hauptsatz der mechanischen Wärmetheorie. Leipzig 1905, S. 40

Für ewig entzweite Pole

Eisenfeilspäne zeigen die abstoßende Wirkung zweier gleichnamiger ferromagnetische Pole

Was will die Nadel nach Norden gekehrt?“
Sich selbst zu finden, es ist ihr verwehrt.
Die endliche Ruhe wird nur verspürt,
Sobald der Pol den Pol berührt.
Drum danket Gott, ihr Söhne der Zeit,
Daß er die Pole für ewig entzweit.
Magnetes Geheimnis, erkläre mir das!
Kein großer Geheimnis, als Lieb´ und Haß.
Willst du deines Gleichen kennen lernen,
So wirst du dich gleich wieder entfernen.
Warum tanzen Bübchen mit Mädchen so gern?
Ungleich dem Gleichen bleibt nicht fern.
Dagegen die Bauern in der Schenke
Prügeln sich gleich mit den Beinen der Bänke.
Der Amtmann schnell das Übel stillt,
Weil er nicht für ihres Gleichen gilt.
Soll dein Kompaß dich richtig leiten,
Hüte dich vor Magnetstein, die dich begleiten.
*

Die anziehende und abstoßende Wirkung eines Ferromagneten und die Vermutung, dass die Erde als ein solcher anzusehen sei, wurde nicht nur im Rahmen der aufkommenden neuzeitlichen Physik als eine erstaunliche Eigenschaft der Materie angesehen. Sie wurde auch schnell zum Gegenstand esotherischer Praktiken und zur Metapher für Abstoßung und Anziehung in fast allen Bereichen des menschlichen Lebens.
Der Ferromagnetismus wurde erst im letzten Jahrhundert als kollektive makroskopische Wirkung eines mikroskopischen Effekts, dem Spin von Atomen, erkannt. Auch heute noch ist der Magnetismus allgemein eine aktuelle Forschungsdisziplin der Physik und hat seine tiefsten Geheimnisse (noch) nicht preisgegeben.


* Johann Wolfgang von Goethe. Poetische Werke. Band 1, Berlin 1960 ff, S. 423ff.


Johann Wolfgang von Goethe
(Deutscher Dichter 1710–1782)
Johann

Zum 200. Geburtstag von Rudolf Clausius – Energie und Entropie

Die Sonnenenergie wird verbraucht, die Entropie nimmt zu. Doch dadurch werden alle lebenswichtigen Vorgänge auf der Welt angetrieben.

Heute vor 200 Jahren wurde der Physiker Rudolf Clausius (2. Januar 1822 – 24. August 1888) geboren. Er ist der „Entdecker“ der Entropie, einer physikalische Größe, die nicht nur von physikalischer Bedeutung ist, sondern letztlich als zentraler Begriff für die Beschreibung wesentlicher Aspekte der Energieproblematik gelten sollte. Leider kommt das meist nicht direkt zum Ausdruck, obwohl es helfen würde, den Umgang mit der Energie besser einzuschätzen.
Das Problem ist nämlich, dass die Energie weder erzeugt noch vernichtet werden kann – es ist eine Erhaltungsgröße. Die lebensweltlichen Erfahrungen mit der Energie sind scheinbar andere: Demnach geht Energie verloren. Denn man muss ständig neue Energie zum Heizen, für die Fortbewegung und viele andere Hilfsfunktonen im Alltag beschaffen und dementsprechend auch dafür bezahlen. Aber geht es uns beispielsweise mit dem Wasser, das uns per Wasserleitung ins Haus geführt wird genauso? Wir sprechen von Wasserverbrauch: Wasser wird für die verschiedensten Zwecke, zum Kochen, Waschen, Klospülen usw. verbraucht, ohne dass jemand der Meinung wäre, das Wasser würde verschwinden, vernichtet werden. Im Gegenteil, meist wird die Schmutzwasserbeseitigung dadurch berechnet, dass man den Wasserverbrauch an der Wasseruhr abliest.
Ganz ähnliche Erfahrungen machen wir mit dem Energieverbrauch, bei dem die Energie mengenmäßig erhalten bleibt und insofern qualitativ verändert wird, als sie nicht noch einmal für denselben Zweck zu gebrauchen ist. Hat sich meine Tasse mit heißem Tee abgekühlt, so wurde die Energie durch Wärme an die Umgebung abgegeben. Mir ist es dann nicht ohne Weiteres möglich die jetzt in der Zimmerluft befindliche Energie wieder in den Tee zurückfließen zu lassen. Der Energieverbrauch ebenso wie der Wasserverbrauch besteht darin, dass die Energie nicht noch einmal für denselben Zweck gebraucht werden kann. Sie wird entwertet. Es ist also neben der Erhaltung der Energie ein Begriff erforderlich, der die Entwertung bzw. die darin enthaltene Unumkehrbarkeit (Irreversibilität) durch eine neue Größe zu erfassen.
Genau darin besteht das Verdienst von Rudolf Clausius, indem er die Energieentwertung mit Hilfe der Größe der Entropie erfasste, die fortan mit dem Buchstaben S bezeichnet wird. In einer berühmten Arbeit aus dem Jahre 1865 schreibt er in diesem Zusammenhang: „… so schlage ich vor, die Größe S nach dem griechischen Worte , die Verwandlung, η  τροπή, die Verwandlung, die Entropie des Körpers zu nennen. Das Wort Entropie habe ich absichtlich dem Worte Energie möglichst ähnlich gebildet, denn die beiden Größen, welche durch diese Worte benannt werden sollen, sind ihren physikalischen Bedeutungen nach einander so nahe verwandt, daß eine gewisse Gleichartigkeit in der Benennung mir zweckmäßig zu seyn scheint“.
Er schließt seinen Aufsatz mit der den Worten, dass „man die den beiden Hauptsätzen der mechanischen Wärmetheorie entsprechenden Grundgesetze des Weltalls in folgender einfacher Form aussprechen kann.
1) Die Energie der Welt ist constant,
2) Die Entropie der Welt strebt einem Maximum zu.“*
Den 2. Hauptsatz der Thermodynamik oder der Entropiesatz, wie man ihn heute bezeichnet, besagt also, dass die beim Umgang mit der Energie auftretende Energieentwertung nur zunehmen, nicht aber abnehmen kann.

Wer es etwas genauer informiert werden möchte, den verweise ich auf frühere Beiträge (z.B. hier und hier und hier).


* Rudolf Clausius. Über verschiedene für die Anwendung bequem Formen der Hauptgleichungen der mechanischen Wärmetheorie. Analen der Physik und Chemie Band CXXV 7, No. 7  (1865) S. 353 – 400

Der Winter kündigt sich mit feinen Kristallen an

Jetzt beginnt die Zeit, in der die Herbstfarben allmählich in den Hintergrund treten, auch wenn sie noch keck durch die Kristalle hindurchschimmern, mit denen der aus Schwarzweiß ausgerichtete Winter das Bunte zu überkrusten versucht. Die Eiskristalle haben sich in der klaren kalten Nacht gebildet. Sie streben alle in nachbarschaftlicher Konkurrenz dem Himmel zu, weil es in der Nähe der Blattoberfläche noch zu warm ist, um die Kristallisationswärme loszuwerden. Denn das ist der energetische Preis für den Übergang vom Gas zum Festkörper.
Jeder Kristall startet auf einem Härchen oder einer kleinen Erhöhung auf dem Blatt und wartet auf Wasserdampfmoleküle, die sich den bereits kristallisierten und damit fixierten zugesellen.
Wir sehen hier nicht mehr die Schönheit des Herbstes, sondern des Übergangs zum Winter, der demnächst auch offiziell beginnt. Inoffiziell hält er ja bereits als meteorologischen Winterbeginn seit Monatsanfang in unseren Breiten seinen noch schüchternen Einzug.

Photoarchiv