//
Artikel Archiv

Physikalisches Spielzeug & Freihandversuche

Diese Kategorie enthält 200 Beiträge

Ein Ei im Mai

Auf ein Ei geschrieben

Ostern ist zwar schon vorbei,
Also dies kein Osterei;
Doch wer sagt, es sei kein Segen,
Wenn im Mai die Hasen legen?
Aus der Pfanne, aus dem Schmalz
Schmeckt ein Eilein jedenfalls,
Und kurzum, mich tät’s gaudieren,
Dir dies Ei zu präsentieren,
Und zugleich tät es mich kitzeln,
Dir ein Rätsel drauf zu kritzeln.
 
Die Sophisten und die Pfaffen
Stritten sich mit viel Geschrei:
Was hat Gott zuerst erschaffen,
Wohl die Henne? wohl das Ei?
 
Wäre das so schwer zu lösen?
Erstlich ward ein Ei erdacht:
Doch weil noch kein Huhn gewesen,
Schatz, so hat’s der Has gebracht.

Eduard Mörike (1804 – 1875)

Ein weiteres Rätsel, das zwar nicht auf dem Ei gekritzelt steht, das aber aus ihm herausgek(r)itzelt werden kann ist die Frage, ob ein Ei gekocht oder noch roh ist. Bereits in meiner Kindheit wurde das Rätsel experimentell gelöst, indem man das fragliche Ei selbst befragte – natürlich in der Eiersprache . Dazu bringt man es (wegen möglicher unkalkulierbarer Fluchtbewegungen auf einem Teller) – mit einem kräftigen Dreh in schnelle Rotation und vergleicht die Drehzahl mit der eines anderen Eis, dessen Zustand bekannt ist. Es zeigt sich dann, dass das gekochte Ei länger als das rohe rotiert. Dafür zeigt das rohe Ei eine zunächst rätselhaft erscheinende Besonderheit. Wenn man es während der Rotation durch Antippen kurz anhält und es sofort wieder loslässt, setzt es zumindest kurz seine Drehung fort. Das gekochte Ei bleibt bei einer solchen Behandlung unwiderruflich stehen.

Der Unterschied im Verhalten der beiden Eier ist darauf zurückzuführen, dass der Inhalt im rohen Ei weitgehend zähflüssig das gekochte aber durchgehend hart ist. Dreht man das gekochte Ei an, so bringt man wegen der festen Verbindung aller Teile des Eis dieses als Ganzes in Bewegung. Beim gekochten Ei gelingt es mit einem Dreh nur die Rotationsenergie auf die äußere Schale und die unmittelbar benachbarte flüssige Eiweißschicht zu übertragen, die die Bewegung dann mit einer kleinen Verzögerung an die weiteren inneren Schichten weitergibt. Denn aus Trägheit verharrt das Innere des Eis zunächst in Ruhe und wird erst nach und nach vor allem durch innere Reibung zulasten der äußeren Schichten und der rotierenden Schale in Gang gesetzt.
Das heißt, dass man beim Andrehen des rohen Eis mit einem Dreh weniger Energie übertragen kann als beim gekochten. Denn es werden nur die äußeren Schichten in Gang gesetzt. Diese geben dann anschließend noch einen Teil der Energie davon an die inneren Schichten ab, was zu einer stärkeren Abbremsung führt.
Meine Oma hatte früher eine andere viel einfachere Erklärung: Am Verhalten des rohen Eis merkt man, dass es noch ein wenig lebt. Ich stellte mir vor, dass das „noch ein wenig lebende“ Ei sich zunächst gegen die unverhoffte schnelle Drehung wehrt, was das tote gekochte Ei nicht mehr kann.




Strukturfarben in der Regionalbahn

Auf einer abendlichen Fahrt mit der Regionalbahn glaubte ich zunächst meiner Müdigkeit zuschreiben zu müssen, dass ich die Reflexion meines Abteils in der Scheibe durch zarte psychodelisch wirkende Farben untermalt zu sehen glaubte. Nein, nun etwas wach geworden glaubte ich es nicht nur, sondern war sicher, dass dort Farben waren, die aus ganz bestimmten Betrachtungswinkeln und vor geeigneten Hintergründen deutlich hervortraten.
Nachdem ich einige Zeit herumgerätselt und auch experimentiert hatte (zum Glück waren kaum Fahrgäste anwesend, die ich hätte nerven können), fiel mir wieder ein, wie es zu diesen Farberscheinungen kommt. Es ist vor allem eine nicht direkt wahrnehmbare Kunststofffolie, mit der die Scheiben des Zugs vermutlich aus Sicherheitsgründen überzogen sind. Sie hat die sicher nicht beabsichtigte Eigenschaft doppeltbrechend zu sein und beim Durchgang von polarisiertem Licht Farberscheinungen hervorzubringen. Ein schöner Nebeneffekt also.
Wie an anderer Stelle ausführlicher beschrieben, wird normales Licht polarisiert, wenn es unter einem bestimmten Winkel (Brewsterwinkel) reflektiert wird. Das ist hier u. A. auf der glänzenden Ablage vor dem Abteilfenster der Fall. Das so polarisierte Licht fällt durch die Folie und wird dabei in zwei Teilwellen unterschiedlicher Geschwindigkeit zerlegt. Das führt dazu, dass ihre jeweiligen Phasen nicht mehr in derselben, sondern in unterschiedlichen Ebenen gleich sind. an der Rückseite der Scheiben reflektiert. Davon würde man normalerweise gar nichts merken, wenn das in dieser Weise modifizierte Licht nicht auf die Fensterscheiben aufträfe und von diesen abermals unter dem Brewsterwinkel ins Auge des Betrachters reflektiert und auf diese Weise abermals polarisiert würde. Dabei fallen die verschiedenen Ebenen der Teilwellen wieder zusammen und überlagern sich (interferieren). Aufgrund der durch die Doppelbrechung bewirkten Phasenverschiebung, kommt es zu Verstärkungen und Abschwächungen bestimmter Wellenlängen des sichtbaren Lichts, d.h. zu einzelnen Farben.
Damit die Bedingungen für die Farbentstehung erfüllt sind, treten die Farben nur unter bestimmten Winkeln auf. Außerdem sind bestimmte Hintergründe in der Spiegelwelt besser als andere geeignet, die Sichtbarkeit der Farben zu erhöhen.
Durch die Entdeckung dieses von den Fensterkonstrukteuren unbeabsichtigten Phänomens verging der Rest der Reise durch interessante Eindrücke beim Blick durch das Fenster wie im Fluge.

Schönheit durch Trennung und Vermischung

Für mich zählte nur, was homogenes Wachstum, Ungeschiedenheit, erreichter Ruhezustand war, für sie galt nur Trennung und Vermischung, das eine oder das andere, oder beides zugleich….sie schien offenbar schon zu wissen, daß das Gesetz der lebenden Materie nichts anderes sein sollte als der ewige Wechsel von Trennung und Wiedervereinigung.*

Dies ist eine meiner Strandbilder, die ich im Zusammenspiel mit den Gezeiten gestaltet habe.

* Italo Calvino. Cosmicomics. München 1989. S.101

Kratzer um die Sonne

Links: Quasikonzentrische Ringe um den Sonnenreflex auf einer Karosserie. Rechts: Vergrößerter Ausschnitt

Es dringt in jede Spalte,
zeichnet alle Formen
– auch die unsichtbaren

Andrzej Stasiuk (*1960)

H. Joachim Schlichting. Spektrum der Wissenschaft 3 (2022), S. 74 – 75

Feinste Kratzer auf glatten Oberflächen sind normalerweise unsichtbar. Unter der Sonne treten sie allerdings abschnittsweise als dünne, manchmal bunt schillernde Streifen hervor, die sich scheinbar kreisrund um das Bild der Lichtquelle herum gruppieren.

Die meisten Menschen würden wohl behaupten, ein frisch lackiertes Auto glänze am schönsten. Wenn man hingegen auf einen speziellen physikalischen Effekt aus ist, darf die Autokarosserie nicht mehr ganz fabrikneu sein. Dann bildet sich an klaren Tagen um das reflektierte Bild der Sonne herum ein konzentrisch aussehendes System von mehr oder weniger kurzen Lichtstreifen. Sie schillern überdies häufig in verschiedenen Spektralfarben (siehe »Leuchtspuren«). Besonders lange genutzte Fahrzeuge ergeben die schönsten Effekte. Denn die Ringe werden letztlich durch Gebrauchsspuren hervorgerufen, die im Lauf der Zeit durch mechanische Einwirkungen auf den Lack entstehen. Daran sind die rotierenden Bürsten beim Waschen oder das manuelle Säubern ebenso beteiligt wie Schmutzteilchen, die über den Lack hinweg streichen und dabei mikroskopisch kleine Rillen hinterlassen.

Auf den ersten Blick könnte man vermuten, es wären kreisförmige Streifen für das Phänomen verantwortlich, vielleicht durch entsprechende Bewegungen beim Polieren in diesem Bereich. Doch die leuchtenden Ringe bewegen sich mit dem Reflex der Lichtquelle mit und treten an fast jeder beliebigen Stelle in Erscheinung. Es muss eine andere Ursache geben.

Schaut man sich die hellen Striche genauer an, so erkennt man: Sie sind meist gar nicht gekrümmt, sondern es handelt sich um geradlinige Riefen, die sich wie Tangentenstücke an imaginäre Kreise um den Sonnenreflex herum gruppieren. Offenbar sieht man nur jene Abschnitte der Kratzer, die gerade so orientiert sind, dass sie das Licht ins Auge reflektieren. Auf die Weise entsteht insgesamt scheinbar eine kreisförmige Struktur. Unser visuelles System verstärkt den Eindruck, denn es tendiert dazu, Reize möglichst ausgewogen und symmetrisch wahrzunehmen. Denn wegen der Zufallsverteilung der Rillen kann es in Wirklichkeit keine aus tangentialen Stücken zusammengesetzten geschlossenen Kreise geben.

Wie kommt es zu dem Phänomen? Auf einer perfekt glatten Oberfläche wäre das Spiegelbild der Sonne genau auf einer Fläche zu sehen – und nur dort –, von der die einzelnen Punkte der Sonnenscheibe nach dem Reflexionsgesetz ins Auge geworfen werden. Nun sehen wir aber viele Stellen glänzen, die vom Spiegelbild der Sonne ein Stück entfernt sind. Darum können die reflektierenden Flächenelemente nicht in derselben Ebene liegen wie die gespiegelte Sonne. Sie müssen vielmehr zu ihr hin geneigt sein und zwar umso stärker, je weiter weg sie liegen.

Die Erklärung liegt im u-förmigen Querschnitt der Kratzer. Deswegen existiert ein ganzes Spektrum unterschiedlich geneigter Flächenelemente, und jedes leuchtet an den Stellen passender Winkel auf. Da die Sonne eine ausgedehnte Lichtquelle ist, erhellt sie nicht nur einen Punkt, sondern die Reflexion erstreckt sich noch über ein kleines Stück zu dessen Seiten. Die Länge der strahlenden Abschnitte hängt mit der scheinbaren Größe der Sonne zusammen. Außerdem sind die Reflexe an einem Kratzer auch deshalb nicht auf einen Punkt beschränkt, weil die Innenseiten unregelmäßig strukturiert sind und an mehreren Stellen passende Bedingungen bieten. Aus Symmetriegründen gelten die Überlegungen für alle tangential um das Spiegelbild der Sonne herum orientierten Rillen. Mit zunehmendem Abstand vom Zentrum sind immer steilere Neigungen für eine Reflexion zum Betrachter erforderlich. Da diese seltener vorkommen, nehmen die Häufigkeit und die Helligkeit leuchtender Kratzerabschnitte nach außen hin ab.

Obwohl die funkelnden Stellen einen Eindruck davon vermitteln, wie stark der Autolack vom Alltag gezeichnet ist, muss man sich vor Augen führen, dass die tatsächliche Zahl und Länge der winzigen Schrammen noch wesentlich größer sind. Eine Computersimulation veranschaulicht das: Man kann für eine Zufallsverteilung unterschiedlicher Kratzer, die im diffusen Licht unsichtbar sind, die Abschnitte visualisieren, die mit einer senkrecht darüber angebrachten Punktlichtquelle zu Tage treten. Dann zeichnen die Reflexionen ein ähnliches Muster wie auf einem Autodach und spiegeln doch immer nur einen Bruchteil aller Unebenheiten wider.

Solche strahlenden Ringe lassen sich außerdem beispielsweise als Reflexionen auf Besteck und weiteren intransparenten Objekten erkennen, aber auch beim Blick durch die Kunststofffenster eines Flugzeugs. Diese sind ebenso mechanischen Einwirkungen ausgesetzt. Von den winzigen Spuren sieht man nur etwas, wenn man durch das Fenster hindurch auf eine Lichtquelle blickt. In dem Fall gruppieren sich die hellen Abschnitte nicht um das Spiegelbild, sondern um das Original der Lichtquelle (siehe »Spektrum« August 2019, S. 52). Daher unterscheiden sich die physikalischen Verhältnisse insofern, als das Licht hier nicht an den Kratzern reflektiert, sondern an ihnen gebrochen wird.

Bei genauerem Hinschauen glitzern viele Rillen bunt. Offenbar sind einige der feinen Unregelmäßigkeiten von der Größenordnung der Wellenlänge des Lichts. Dann kommt es zur Beugung des Lichts, die das einfallende weiße Licht in die Bestandteile seines Spektrums zerlegt. Die Strukturen wirken wie feine Spalte, entlang derer die auftreffende Strahlungsfront Elementarwellen in alle möglichen Richtungen aussendet. Überlagern sie sich im Auge oder auf dem Chip der Kamera, so werden entsprechend den jeweiligen Wegunterschieden bestimmte Wellenlängen verstärkt oder abgeschwächt. Je nach Beobachtungsposition schimmern die Schrammen oft so intensiv farbig, dass sie viel breiter wirken, als sie in Wirklichkeit sind.

Virtuelle Räume, wo man sie nicht erwartet …

In Museen und anderen Ausstellungsgebäuden sind oft auch die Toiletten sehenswert. Hier befinde ich mich in einem ziemlich großen Raum rundum mit Waschbecken und Spiegeln ausgestattet, aber coronabedingt gähnend leer (siehe Foto). Als ich vom Händewaschen aufblicke, erscheint mir auf einmal die Leere bis in die Unendlichkeit aufgebläht und gibt im ersten Moment einen völlig unwirklichen Eindruck ab.
Da dem Spiegel rückwärtig ein weiterer Spiegel gegenüber hängt, spiegeln sich die Spiegel – aus Langeweile? – gegenseitig ab. Vermutlich auch, wenn ich nicht dabei bin – denke ich jedenfalls. (Das quantenphysikalische Problem wonach durch die Beobachtung einer Gegebenheit der Beobachter diese beeinflusst, scheint hier jedenfalls nicht relevant zu sein).
Durch die gegenseitige Spiegelung der Spiegel ist es nicht zu vermeiden, dass auch die Spiegelungen des jeweils gegenüberliegenden Spiegels gleich mit gespiegelt werden und wenn sie schon dabei sind, so spiegeln sie auch die Spiegelungen der Spiegelungen und so weiter ad infinitum. Naja, jedenfalls bis ein gründunkles amorphes Etwas entsteht. Da mein Konterfei nun auch noch zwischen die Fronten geraten ist – trotz aller Anstrengung, ließ sich das nicht ganz vermeiden – muss es das Spielchen wohl oder übel mitmachen. Das änderte sich auch dann nicht, als ich die Kamera in Anschlag brachte, um dieses Erlebnis zu dokumentieren – sie integrierte sich ohne Umschweife auch noch ins Bild. Hier trieft es nur so von Selbstbezüglichkeit.
Aber was gibt es da wirklich zu sehen? Zunächst einmal tut sich ein nahezu unendlich großer Raum auf, der nur dadurch daran gehindert wird, das Unendliche zu erreichen, dass zum einen die Spiegel nicht ganz parallel zueinander ausgerichtet sind. Der dadurch bedingte leichte Silberblick führt zu einer Kurve, die noch im Endlichen uneinsehbar und uneinsichtig wird. Hinzu kommt zum anderen, dass die Spiegel einen weiteren irdischen Mangel aufweisen – sie absorbieren einen zwar winzigen aber endlichen Teil des Lichts. Dieser summiert sich allerdings auf dem Wege zur Unendlichkeit rasend schnell zur Lichtlosigkeit, vulgo Dunkelheit, in der wir endlichen Wesen nichts mehr sehen können.
Doch was um alles in dieser beschränkten Welt lässt das Licht im zunehmenden Grün verglimmen? Die Antwort ist abermals im Verhalten der Spiegel zu suchen. Denn offenbar schlucken sie nicht alle Farben des weißen Lichts gleichermaßen, sondern vor allem diejenigen, die als Komplementärfarbe dieses für Fensterglas typische Grün zurücklassen. Diese Farbe kennen wir. Wenn wir nämlich durch eine sehr dicke Scheibe blicken oder auf die Kante einer Scheibe, macht sich dieses Glasgrün (nicht grasgrün) bemerkbar.
Beim Durchgang des Lichts durch die Glasscheibe des Spiegels und – nachdem es an der verspiegelten Rückwand reflektiert wurde – ist ähnlich wie bei unseren Fensterscheiben von einer Grüntönung noch nichts zu bemerken. Wenn sich aber die Durchgänge häufen, addieren sich die geringen Absorptionen, so als blickte man durch eine sehr dicke Glasschicht.
Auf irritierend könnte vielleicht die folgende Überlegung sein: Das Spiegelbild ist etwas Virtuelles. Es ist uns verwehrt in die virtuellen Räume dieser Spiegelungen der Spiegelungen usw. nicht eintreten – das kann nur Alice* – aber die Aufsummierung der Virtualitäten scheint ganz reale Folgen zu zeitigen, das Licht wird geschluckt und zwar lange bevor die Unendlichkeit (der man ja so einiges Irreales zutraut) erreicht ist.
Ich verließ diesen Raum des Museums mit einem tieferen Eindruck als alle übrigen Räume zusammen hinterlassen hatten.


* Lewis Carroll. Alice hinter den Spiegeln. Frankfurt 1974

Riesensonnentaler in der Stadt

Sonnentaler bringt man normalerweise mit den Lichtkreisen unter dem Blätterdach von Bäumen in Verbindung. Wie erstaunt war ich doch, als ich perfekt aussehende Sonnentaler in der Stadt in einer bestimmten Anordnung über die Straße verstreut vorfand. Ich fragte mich natürlich, durch welche Löcher hier die Sonne wohl durchstrahlen würde und stieß schließlich auf hochgelegene Sprossenfenster mit kleinen quadratischen Scheiben (Schätzungsweise 15 cm x 15 cm). Diese reflektierten einen Teil des auftreffenden Sonnenlichts, was denselben Effekt hat, wie wenn das Licht durch quadratische Löcher geht: In der Nähe würde man quadratische Abbilder der kleinen Fenster auffangen, in weiterer Entfernung das Bild der Sonne.
Wer es nicht glaubt, dem empfehle ich folgendes kleines Expermiment. Man nehme einen quadratischen oder rechteckigen Taschenspiegel, lasse das Sonnenlicht darauf fallen und richte den Reflex auf eine möglichst weit entfernte schattige Fläche, z.B. die Wand eines hohen Hauses. Man wird einen runden Fleck wahrnehmen.
Dass die Reflex-Sonnentaler auf der Straße nicht so ordentlich aufgereiht erscheinen, wie die Fensterelemente liegt wohl daran, dass letztere nicht völlig plan eingebaut worden sind und die große Entfernung zu entsprechenden Verschiebungen der Abbilder auf dem Asphalt führt.

Der Pi-Tag, diesmal sportlich begangen

Photo by Yan Krukov on Pexels.com

Heute feiern wir (naja, einige) den kreisförmigsten aller Tage des Jahres, den Pi-Tag – nach der englischen Schreibweise: 3.14. Denn Kreise, so real, reell und rational sie auch sein mögen, tragen im tiefsten Innern etwas sehr Irrationales, das Pi bzw. π. Das macht sie so menschlich. Man denke nur an die Gedanken, die nachts wenn man mal wieder nicht schlafen kann die Runde machen und dabei vielleicht nur um sich selbst kreisen. Egal ob die Gedanken einen großen oder kleinen Durchmesser haben, dieser muss in allen Fällen mit Pi (= 3,1415…usw.) multipliziert werden, um rund zu werden. Selbst die Form unseres Kopfes ist dadurch auf die eine oder andere Weise rund geworden (zwischen Zylinder-, Birnen- und Kugelform ist fast alles vertreten). Man kann das auch umdrehen und mit Francis Picabia (1879 – 1953) zu der Ansicht gelangen: Unser Kopf ist rund, damit das Denken die Richtung wechseln kann. Deswegen gilt er auch als exzentrischer Ausnahmekünstler, der u. A. zu der wichtigen Erkenntnis kam: „Hier ist hier“, womit wohl wieder der Punkt gemeint ist, um den sich alles dreht. Und damit sind wir wieder beim Pi.
Wie sollte man diesen Tag feiern? Ich denke, eine schöne Zeremonie mit sportlichem Impetus wäre mal wieder die Hüften kreisen zu lassen und einen kreisrunden Hula-Hoop-Reifen in Rotation zu versetzen (siehe Abbildung). Man würde unter Einbeziehung einiger Pis, die ich hier aber nicht explizit machen möchte, eine schöne physikalische Doppelkreisgeschichte erzählen können.
Das Sportliche dieser Geschichte ist vor allem in der Kraft begründet, die der oder die Hüftrotierende aufzubringen hätte, damit der Reifen der Kreisbahn folgt, nämlich eine ausreichende Zentripetalkraft. Sie ergibt sich aus dem Produkt der Reifenmasse und der Differenz zwischen Reifenradius und Taillenradius multipliziert mit dem Quadrat der Winkelgeschwindigkeit. Diese Kraft muss konstant gehalten werden, damit der Reifen rotierend in der Schwebe bleibt.
Wer weniger Körpereinsatz aufbringen möchte, könnte auch eine schöne runde Torte (Im Englischen pie ist das Pi explizit enthalten und wird auch genauso ausgesprochen) mit runden Verzierungen backen und sich dabei klarmachen, dass er trotz des sehr rationalen Vorgehens maßgeblich vom Irrationalen des Pis Gebrauch gemacht hat – wie übrigens auch dieser Beitrag.
Wer Interesse an früheren Pi-Tagen dieses Blogs hat, findet sie u. A. hier und hier und hier.

Gefrorene Federn

Was hier so federleicht und bunt daherkommt, sind nicht die Federn eines bunten Eisvogels. Vielmehr blickt man auf Eiskristalle, die sich in einer dünnen Schicht ziemlich schnell ausbreiten. Normalerweise ist Eis unbunt zwischen transparent und weiß changierend. In diesem Fall liegt die Eisschicht zwischen zwei Polarisationsfolien. Die vor der Eisschicht platzierte Folie polarisiert das einfallende Licht und die hinter der Eisschicht befindliche Folie analysiert das beim Durchgang durch die Eiskristalle modifizierte Licht. Diese Modifikation (siehe unten) macht sich durch bunte Farben bemerkbar, die gewisse Auskünfte über die innere Struktur der Eiskristalle geben.

Wer es physikalisch etwas genauer wissen will, dem sei gesagt, dass Eis die optische Besonderheit hat, doppelbrechend zu sein: Das durch die Eisscholle hindurchgehende polarisierte Licht wird in zwei leicht unterschiedliche Richtungen gebrochen, so dass es in zwei Teilstrahlen zerfällt. Diese unterscheiden sich in ihrer Ausbreitungsgeschwindigkeit. Infolgedessen entsteht zwischen beiden Teilstrahlen eine unter anderem von der Wellenlänge abhängige Phasendifferenz. Sie macht sich in einer entsprechenden Drehung der Polarisationsebene bemerkbar, wenn sich die Teilstrahlen des Lichts beim Austritt aus dem Eis überlagern. Tritt dieses Licht dann durch ein Polarisationsfilter oder wird es in einem bestimmten Winkel reflektiert, so werden den unterschiedlichen Drehungen der Polarisationsebene entsprechend die verschiedenen Wellenlängen nur mehr oder weniger gut durchgelassen. Die auf diese Weise veränderten Intensitäten der einzelnen Wellenlängen des ehemals weißen Lichts äußern sich in verschiedenen Farben.

Physik im Alltag – Seltsame Phänome und ihre Erklärungen

H. Joachim Schlichting. Spektrum der Wissenschaft Spezial 1.22 (2022) 82 Seiten

Physikalischer Reiz des Gewöhnlichen
Die Menschen haben von jeher die Natur nicht nur wahrgenommen, sondern die Natur auch auf die eine oder andere Weise zu verstehen versucht. Aus heutiger Perspektive erstaunlich tief gehende physikalische Einsichten hat bereits Leonardo da Vinci vor mehr als 500 Jahren bei seinen zahlreichen Beobachtungen und zeichnerischen Rekonstruktionen bewiesen. Damals war die neuzeitliche Physik noch im Entstehen begriffen, sodass man nur darüber staunen kann, wie klar und verständlich Leonardo viele Alltagsbeobachtungen dargestellt hat. Die Kunst kam ihm bei der grafischen Rekonstruktion der Phänomene sehr zugute (S. 6).
Physik und Kunst haben sich von jeher gegenseitig befruchtet und zahlreiche Erscheinungen inspirieren oft durch ihren ästhetischen Reiz dazu, sie näher zu erschließen.
Aber selbst profan wirkende Vorgänge führen manchmal erstaunlich weit bis in die moderne Forschung.
So ist es eine alltägliche Erfahrung, Schnecken auf ihrem glitschigen Schleimfilm gleiten zu sehen. Denkt man jedoch an die eigenen Fortbewegungsprobleme (S. 40), drängen sich Fragen geradezu auf. Wie stellt es die Schnecke an, bergauf zu gleiten oder sich überhaupt vom glitschigen Schleim abzustoßen? (S. 64).
Die wissenschaftliche Antwort führt direkt in die Küche, in der wir es mit ähnlichen Problemen zu tun haben, wenn beispielsweise der Ketchup aus der Flasche wohldosiert auf dem Teller landen soll (S. 72). Flüssigkeiten können je nach mechanischer Einwirkung zwischen zäh- und leichtflüssig wechseln. In Form von Schaum ähneln manche Gemische sogar einem Festkörper (S. 70). Selbst reines Wasser zeigt oft faszinierende Strukturen und überraschende Schauspiele. Es ist sogar musikalisch: Spült man nach der Teepause sein Edelstahlsieb, so bekommt man zuweilen schöne Töne zu hören. Dahinter steckt ein komplexer Vorgang, der erst zum Mysterium wurde, seitdem es diese Teesiebe gibt (S. 78). Andere Strömungsereignisse sind altbekannt, aber nicht weniger imposant und fordern geradezu dazu heraus, selbst ausprobiert zu werden.
Lassen Sie sich durch diese Sammlung inspirieren, fortan den Alltag mit neuen Augen zu sehen.

Ihr H. Joachim Schlichting.

Lichtsterne – dreieckige Lichtkreuze

Lichtkreuze im Lichtkreis oder –rechteck sind wegen der inzwischen großen Verbreitung von Doppelglasscheiben sehr häufig im Alltag der wissenschaftlich technischen Welt zu sehen. Dabei handelt es sich um Projektionen von Licht (meist Sonnenlicht), das von Doppelglasfensterscheiben reflektiert wird.
Der luftdicht verschlossene Innenraum dieser Scheiben steht unter dem Luftdruck, der bei ihrer Herstellung herrschte. Da der äußere Luftdruck, dem sie beim Einbau in Fenstern an unterschiedlich hoch gelegenen Häusern und bei unterschiedlichen Wetterbedingungen ausgesetzt sind, sich im Allgemeinen vom Luftdruck bei der Herstellung unterscheidet, wölben sich die Scheiben dieser Druckdifferenz entsprechend nach innen und nach außen – eine Scheibe nach innen, die andere nach außen. An ihnen reflektiertes Sonnenlicht wird demnach der Verformung entsprechend fokussiert bzw defokussiert und führt bei rechteckigen Scheiben zu den genannten Lichtkreuzen im Lichtkreis.
Aber nicht alle Doppelglasscheiben sind rechteckig. Daher erwartet man von anders geformten Scheiben auch andere Reflexionsformen an gegenüberliegenden Häuserwänden oder anderen Projektionsflächen. Einer dieser seltenen Fensterformen ist das Dreieck. Meist sind solche Dreieckfenster im oberen Giebelbereich zu finden. Wenn diese vom Sonnenlicht getroffen werden, liefern sie der Dreiecksform entsprechende Reflexe. Abbildung 1 zeigt einen solchen Reflex, der von einem Fenster hervorgerufen wurde, das in Abbildung 2 zu sehen ist. Die Fotos wurden mir freundlicherweise von Sylvia Zinser zur Verfügung gestellt, die offenbar einen wachen Blick für Naturphänomene hat.
Die Dreiecksform der projizierten Brennlinie erinnert stark an den Stern einer bekannten Automarke. Mathematiker würden darin vielleicht einen isotoxalen Dreieckstern sehen.

Farben durch Bewegung

Kinetische FarbenEines meiner eindrucksvollsten Erlebnisse mit Lichteffekten machte ich vor vielen Jahren im Technorama (Winterthur), einem der interessantesten Science-Center Europas. In einer Sonderausstellung zum Licht ging man in einen abgetrennten verdunkelten Bereich, der von einer weißen Lichtquelle erleuchtet wurde. Schon beim Betreten dieses Bereichs stellte ich mit großer Verwunderung fest, dass ich beim Zwinkern mit den Augen regenbogenfarbige Lichteindrücke wahrnahm. Weiterlesen

Schwarzweiß oder farbig – manchmal entscheidet der Blickwinkel

Beim Lesen eines Buches mit Op-Art-Abbildungen war mir irgendwie so, dass etwas Buntes durch das Glas hindurch schimmerte. Um festzustellen, ob es an mir oder am Glas Wein lag, füllte ich es kurzerhand mit Wasser und sah, dass das Glas oder besser die Flüssigkeit die Bilder lieber farbig hatte. Es ist also nicht der tiefe Blick ins Glas, sondern der Blick durch das Glas, der dieses Phänomen ermöglicht.
Schuld daran sind die Übergänge des vom Op-Art-Bild ausgehenden Lichts von Luft zum Glas, von Glas zum Wasser und vom Wasser zum Glas und dann wieder zur Luft, bevor es mein Auge erreicht. Dabei spielt das dünne Glas die geringste Rolle und muss nicht weiter betrachtet werden. Entscheidend ist der Durchgang des Lichts durch den Wasserkeil, wobei es ähnlich wie in einem optischen Prisma gebrochen und damit aus der ursprünglichen Richtung abgelenkt wird. Da die Lichtbrechung von der Wellenlänge des Lichts abhängt und damit für die verschiedenen Farben, aus denen sich das weiße Licht zusammensetzt, unterschiedlich groß ist, laufen die einzelnen Farben gewissermaßen auseinander und werden schließlich getrennt voneinander wahrgenommen. Man sieht also die weißen Teile des schwarzweißen Op-Art-Bildes in mehreren ineinander verschwimmenden Versionen.
Man kann auch künstlerisch tätig werden, indem man den Blick durchs Glas auf unterschiedliche Weise auf Schwarzweißbilder und andere Darstellungen richtet und sich den schönsten Anblick auswählt.

Gott, heißt es, schied die Finsternis vom Licht,
Doch mocht es ihm nicht ganz gelingen,
Denn wenn das Licht in Farben sich erbricht,
Mußt es vorher die Finsternis verschlingen.
*

* Johann Wolfgang von Goethe (1749 – 1832)

Das Foucaultsche Pendel aus der Perspektive von Gerhard Richter

Anlässlich des 90. Geburtstags von Gerhard Richter am 9. Februar 2022

Ein Pendel behält stets seine Pendelebene bei. Das kann man leicht überprüfen. Im einfachsten Fall nimmt man ein passendes Gestell, an dem man eine kleine Kugel u. Ä. an einem Faden schwingen lässt. Dieses Pendel wird sodann auf einen drehbaren Untersatz platziert. Dazu eignet sich zum Beispiel ein Drehstuhl oder eine drehbare Tortenplatte. (Ich selbst benutze meinen alten Schallplattenspieler). Dreht man den Untersatz nun vorsichtig um sich selbst nachdem man das Pendel in Aktion gesetzt hat, so macht man eine interessante Beobachtung: Das Pendel behält unabhängig von der Drehung seine ursprüngliche Pendelebene bei. Viele finden das merkwürdig.
Was würde denn zu beobachten sein, wenn man sich in das drehende System versetzt dächte? Die Pendelebene würde sich drehen. Wäre das nicht noch merkwürdiger?
Es ist ja faktisch so, dass wir permanent auf einem drehenden System hocken, auf unserer Erde. Sie dreht sich in 24 Stunden einmal um sich selbst. Davon merken wir nur indirekt etwas, zum Beispiel dadurch dass die Sonne aufgeht, ihre Bahn zieht und wieder untergeht. Durch unser kleines Pendel-Dreh-Experiment könnte nunmehr der Gedanke aufkommen, dass ein Pendel, das man lange genug in Schwingung hält, allmählich seine Pendelebene drehen müsste, weil die Erde sich wie ein elaborierter Drehstuhl rotiert.
Einen ähnlichen Gedanken hatte im 19. Jahrhundert der Physiker Jean Bernard Léon Foucault (1819 – 1869). Nach Vorversuchen in seinem eigenen Keller konnte er am 26. März 1851 im Panthéon mit einem 67 Meter langen Pendel und einem 28 Kilogramm schweren Pendelkörper der Öffentlichkeit ein solches Experiment vorführen und damit die Erddrehung gewissermaßen spürbar werden lassen.
Würde man ein solches Foucaultsches Pendel auf dem Nordpol unserer Erde schwingen lassen, so würde sich die Pendelebene in 24 Stunden genau einmal um sich selbst drehen. Weil das Pendel an anderen Stellen der Erde schräg zur Erdachse steht, bewegt sich die Pendelebene je nach geografischer Breite langsamer.
Bei uns in Münster bräuchte das Pendel der Theorie zufolge für einen Umlauf 30 Stunden. Der empirische Beweis dafür kann inzwischen auch in der profanierten Dominikanerkirche in Münster erbracht werden, wo der Künstler Gerhard Richter (* 09.02.1932) im Rahmen der Installation „Zwei Graue Doppelspiegel für ein Pendel“ in einem ansprechenden Ambiente das „Experiment“ für jeden zugänglich gemacht hat.
Das Pendel besteht aus einem 29 m langen Seil mit einer 22 cm großen und 48 kg schweren Messingkugel. Das Seil ist in der hohen Vierungskuppel befestigt und schwingt 4 cm über der kreisrunden Bodenfläche aus Naturstein.
Damit das Pendel nicht durch unvermeidliche Reibungen (vor allem mit der Luft) abgebremst schließlich zur Ruhe kommt, wird es mit einer zentral unter der Schwingungsebene angebrachten vom Fachbereich Physik der Universität Münster entwickelten Elektronik in Gang gehalten.
Über das rein Physikalische des Pendels hinausgehend besteht das Kunstwerk aus zwei an den Wänden angebrachten grauen Doppelspiegeln. Sie reflektieren das Pendel und unvermeidlicherweise die BeobachterInnen gleich mit. Vielleicht sollen auf diese Weise Reflexionen über physikalische und gesellschaftliche Fragen zum Pendel im engeren und weiteren Sinn angeregt werden.

Ich finde das Foucaultsche Pendel in seiner frappierenden Einfachheit vor allem deshalb beeindruckend, weil es eine kosmische Bewegung auf ein menschliches Maß bringt.

Topologie eines Knotens

Dieses kleine Kunstwerk hat mich jahrelang begleitet und gerade in letzter Zeit immer auffordernder angeschaut. Und jetzt weiß ich warum: Der Knoten ist geplatzt. Denn ich habe erkannt, dass es sich bei dem grazilen Gebilde um die Form eines ganz alltäglichen Gegenstands handelt – um die versteifte Form eines einfachen Knotens, dessen beiden Enden verknüpft wurden. Knüpft man nämlich einen Knoten aus flexiblen, aber steifen Material, so entsteht topologisch gesehen dasselbe Gebilde.
Vermutlich wurde ich durch ein kürzlich wiedergesehenes Bild Eschers sensibilisiert, das einen solchen Knoten in etwas anderer Form zeigt.
Das Besondere an meinem Knoten ist, dass er aus einem Steinblock herausgearbeitet wurde, ohne das je die verknüpfende Bewegung ausgeübt wurde, die üblicherweise zum vertrauten Knoten führt. Als Kind muss man sie mühselig erlernen (ich erinnere mich noch daran) und später macht man ihn „im Schlaf“. Vielleicht ist uns durch diese Routine, die faszinierende Struktur abhanden gekommen, die gewissermaßen die Seele dieses Gebildes ausmacht.

Ach ja: Die Geradenabschnitte in meinem Steinknoten sind der Standfestigkeit geschuldet.

Naturkunst trifft Physik

Als ich noch während des Regens einige Tage vor dem Frost wie in Kindheitstagen eine Burg in der Pfütze formte und dann der Natur überlies, ahnte ich nicht, was einige Tage Später nach dem Einbruch der kalten Tage daraus werden würde. Offenbar ist das Wasser schnell versickert, sodass mein bereits vom Regen und dem Wasser in der Pfütze deformiertes Gebäude die von mir beabsichtigte Form weitgehend verloren hat. Dafür ist es durch die Eisstrukturen mit großer „Aufmerksamkeit“ für die Details in ein naturschönes Netzwerk von Eislinien in ein kühles Gesamtkunstwerk eingebunden worden.
Die hellen Bereiche der realtiv dünnen Eisschicht haben keine Berührung mehr mit dem Wasser, auf dem sie ursprünglich mal entstanden sind. Sie sind von unten mir Reifkristallen besetzt, sodass die ursprüngliche Transparenz verschwunden ist. Nur der ursprüngliche „Burggraben“ ist noch mit Wasser gefüllt und die dort noch aufliegende Eisschicht ermöglicht noch einen Durchblick auf den dunklen Pfützenboden.
Heute vor fast genau einem Jahr, bot die ganz unfreiwillig als Eiskunstinstallation mutierte Pfütze noch ein etwas anderes Bild.

Pfützenkunst

Nachdem ich einige Erfahrungen mit der künstlerischen Gestaltung von Sand am Strand mit maßgeblicher Unterstützung von Ebbe und Flut gesammelt und dabei einige schöne Ergebnisse dieser Kooperation zweier so ungleicher Partner erzielt habe (z.B. hier und hier ) , versuche ich es in diesem Winter mit dem Zufrieren von natürlichen und künstlich erschaffenen Pfützen. Während sich in der warmen Jahreszeit der Strand als Betätigungsfeld geradezu anbietet und man auf die verlässliche Wiederkehr der Flut rechnen kann, ist man in diesem Fall auf den Wetterbericht angewiesen. Außerdem zieht sich die Bildung der Eisstrukturen über mehrere Tage hinweg, wobei die finalen Strukturen die reichhaltigsten sind. Die Parameter, die die Entstehung der Froststrukturen mitbestimmen, sind vor allem die Geschwindigkeit, mit der das zufrierende Wasser versickert, die Temperatur und ihr Wechsel während der Frosteinwirkung, der Verlauf der Sonneneinwirkung am Tage und die Struktur des Pfützenuntergrunds. Vor allem auf die Gestaltung dieses Untergrunds bezieht sich meine bescheidende Mitwirkung. In diesem Fall kam es mir insbesondere darauf an, einige Linien und Halbmonde zu initiieren. Das scheint halbwegs gelungen.

Galaktische Nebel in der Wasserpfütze

Was mag das sein, das hier wie ein galaktischer Nebel durch zahlreiche Sterne hindurch gesehen daherkommt? Ich war mir vollkommen sicher, dass ich den Blick nicht nach oben gerichtet und kein Riesenteleskop vor Augen hatte, sondern ohne Hilfsmittel nach unten in eine zugefrorene Wasserpfütze.
Schaut man genauer hin, so erkennt man durch die ansonsten ziemlich glatte Eisschicht hindurch verfaulende Blätter und andere Überbleibsel aus der vergangenen Vegetationszeit. In die Eisschicht integriert zeichnen sich in zarten vor allem Blautönen Strukturen ab, die an Spuren biologischer Aktivität erinnern. Ähnlich wie beim Gefrieren von Wasser die darin enthaltene Luft gewissermaßen ausgeschwitzt wird, sind es hier vermutlich proteinhaltige Bestandteile der verwesenden Biomasse, die sich an der Wasseroberfläche abgesetzt haben und einen äußerst dünnen Belag bilden. Dieser ist offenbar so dünn, dass es aufgrund der Überlagerung des an der vorderen und hinteren Grenzschicht reflektierten Lichts zu ähnlichen Strukturfarben wie bei einer Ölschicht auf einer nassen Straße. Die weißen „Sterne“ sind winzige im Eis eingefrorene Gasblasen, die von innen mit Reif belegt sind.
Wie dem auch sei, es ist auf jeden Fall ein naturschöner Anblick, der zumindest einen Teil seines Geheimnisses bewahrt hat – jedenfalls bis jetzt. Ich habe schon einige Male die Schönheit zugefrorener und zufrierender Pfützen gezeigt. Dort wurden die Strukturen vor allem durch das parallel zum Gefrieren versickernde Wasser hervorgerufen. In diesem Fall zeugt aber die glatte Eisfläche davon, dass der Wasserspiegel während des Gefrierens weitgehend gleich geblieben sein muss. Als Ursache käme eine Versiegelung des Pfützenbodens durch die Sedimentation feinstrukturierter Überreste der verwesenden Biomasse infrage. Meist sind solche Pfützen sehr langweilig und manchmal bei genügender Länge allenfalls zum Glitschen zu gebrauchen. Hier aber finden wir in der verhältnismäßig dicken Eisschicht andere beeindruckende Strukturen.
Das Schöne an der dicken Eisschicht ist außerdem, dass sie nicht so leicht zu zerstören ist. Viele Menschen, auch Erwachsene, genießen eher das akustische Phänomen der klirrend zerbrechenden Eisscheiben als die Wohltat für die Augen.

Die Sehnsucht nach Licht und Wärme

Die dunkle und kalte Jahreszeit lässt die Menschen seit Urzeiten an die Bedeutung des Lichts und des Feuers denken. Es hat für die Entwicklung zum modernen Menschen eine große Rolle gespielt. Unabhängig davon, wie der Mensch zum Feuer oder das Feuer zum Menschen kam – ob durch den göttlichen Prometheus oder durch einen vom Gewitter entfachten Brand oder… – fortan entwickelte der Mensch ganz unterschiedliche Methoden, diese chemische Reaktion der Verbrennung in Gang zu setzen, aufrecht zu erhalten und für die unterschiedlichsten Verrichtungen zu nutzen.
Obwohl die Verbrennung ein sich selbst aufrecht erhaltender Vorgang ist, solange Brennstoff zur Verfügung steht, bestand für die Urzeitmenschen eine große Herausforderung darin, erst einmal die Entzündungstemperatur zu erreichen, um das Feuer in Gang zu setzen. Zur Aufrechterhaltung musste dann nur noch geeignetes Brennmaterial beschafft werden.

Eine Methode Feuer zu machen bestand darin zwei Steine aufeinanderzuschlagen und den dabei entstehenden  Funken „einzufangen“, indem man mit ihm leicht entzündliches Material, wie etwa den Zunderschwamm, zum Glimmen brachte. Als Steine wurden der Feuerstein (sic!) und Pyrit (Schwefelkies) benutzt. Wenn der Zunder „wie Zunder“ brannte, konnte man das Feuer auf andere für den jeweiligen Zweck (z.B. Licht, Wärme…) spezifische Materialien übergehen. Wer das heute nachmachen will, wird erfahren, welche „technischen“ Schwierigkeiten unsere Altvorderen damit zu bewältigen hatten.
Eine andere, meines Erachtens einfacher zu handhabende Methode bestand darin, Reibungswärme zu nutzen. Dass es beim Reiben glühend heiß werden kann, erfährt man beispieslweise, wenn man mit einem stumpfen Bohrer versucht, ein Loch in ein Stück Hartholz zu bohren. Auf ganz ähnliche Weise wurde früher ein mit beiden Händen gedrillter Holzstab in eine passende Vertiefung eines weiteren Stücks Holz gedrückt wurde, bis es zum Glimmen kam.

Diese Vorgeschichte steckt vermutlich tief verwurzelt im menschlichen Bewusstsein. Ich kenne kaum einen Menschen, der nicht vom Feuer eines Kamins beeindruckt ist oder sich von der Flamme einer Kerze verzaubern lässt. Die heutigen Lichterketten und anderen elektrisch betriebenen Leuchtkörper sind gewissermaßen legitime Abkömmlinge dieser tiefen Sehnsucht des Menschen nach Licht und Wärme in dieser dunklen Jahreszeit, auch wenn vieles inzwischen zum bloßen Ritual erstarrt ist.
Die Begeisterung des modernen Menschen für das Licht drückt sich auch in modernen Lichtinstallationen und anderen Performances aus, oft sogar in eigens dafür eingerichteten Museen und im öffentlichen Raum.

Der großspurige Nikolaus

Kein Wunder, dass für diesen Nikolaus der Eingang verwehrt wird. Denn er hat offensichtlich keine Geschenke dabei und sitzt dennoch auf einem hohen Ross.
Dieses Ross, vulgo Hochrad, war weder für Nikoläuse noch für für Akrobaten vorgesehen, sondern war mal als Alltagsfortbewegungsmittel gedacht. Es hat sich, wie man weiß, nicht durchgesetzt. Zum Glück, denn mit diesem Gefährt wäre der Radverkehr noch unbedeutender geworden, als er es mit dem nicht lange nach dem Hochrad entwickelten Fahrrad wie wir es heute kennen leider immer noch ist.

Ein Prall, ein Schall und Brandgeruch

Ein Prall – ein Schall – dicht am Gesicht –
Verloren ist das Gleichgewicht.

So töricht ist der Mensch. – Er stutzt,
Schaut dämisch drein und ist verdutzt,
Anstatt sich erst mal solche Sachen
In aller Ruhe klarzumachen. –

Hier strotzt die Backe voller Saft;
Da hängt die Hand, gefüllt mit Kraft.
Die Kraft, infolge der Erregung,
Verwandelt sich in Schwungbewegung.
Bewegung, die in schnellem Blitze
Zur Backe eilt, wird hier zu Hitze.
Die Hitze aber, durch Entzündung
Der Nerven, brennt als Schmerzempfindung
Bis in den tiefsten Seelenkern,
Und dies Gefühl hat keiner gern.

Ohrfeige heißt man diese Handlung,
Der Forscher nennt es Kraftverwandlung
*

Auch wenn man heute eher von Energieumwandlung sprechen würde, ist der entscheidende Gedanke, den Wilhelm Busch hier herausarbeitet, die Umwandlung von Bewegungsenergie in Wärmeenergie – Busch spricht von Hitze. Ich habe versucht, das Experiment nachzustellen, aber nicht mit ruhender Backe und bewegte Hand, sondern mit einer 100 g schweren Stahlkugel, die ich auf eine harte Unterlage fallen lasse.
Um den Umwandlungseffekt nicht nur zu visualisieren, sondern auch berechnen zu können, lege ich auf die Stahlunterlage ein Blatt Druckerpapier. Wenn die Kugel auf die Unterlage auftrifft, wird fast alle Energie auf einmal in einer winzig kleinen Berührfläche freigegeben. Es kommt zu einem Knall und einer starken lokalen Erhitzung bzw. Temperatursteigerung. Obwohl der Knall nicht zu überhören ist und damit auch ein Teil der freigesetzten Energie als Schallenergie abgegeben wird, ist ihr Beitrag vergleichsweise gering und wird hier nicht weiter verfolgt.Durch die lokale fast augenblickliche Energieabgabe, kommt es zu einer starken Temperaturerhöhung. Das erkennt man daran, dass ein Loch im Papier entsteht. Und dieses Loch ist in den meisten Fällen sogar durch einen auf die Verbrennung zurückgehenden braunen Rand gesäumt. Hinzu kommt, dass man einen deutlichen Brandgeruch wahrnimmt und manchmal von einer kleinen Rauchfahne umweht wird.
Wer hätte gedacht, dass die Temperaturerhöhung durch die beim Stoß freiwerdende Energie die Entzündungstemperatur von Papier (ca. 360 °C) übertrifft?
Dies kann man übrigens leicht rechnerisch abschätzen. Geht man nämlich vereinfachend davon aus, dass die Bewegungsenergie beim Fall der Kugel aus 1 m Höhe vollständig in Wärme (besser: thermische Energie) verwandelt wird, so kommt man zu einer Temperaturerhöhung von ca. 600° C. Das liegt so weit über der erforderlichen Entzündungstemperatur, dass die vereinfachenden Voraussetzungen mehr als ausgeglichen werden.


* Wilhelm Busch (1832 – 1908)

Rätselfoto des Monats November 2021

Warum krümmt sich der Strahl an der Tülle der Teekanne?


Erklärung des Rätselfotos des Monats Oktober 2021

Frage: Real oder Fake? Begründung.

Antwort: Das Monatsrätsel vom 1. Oktober ist kein Fake. Das Foto ist echt. Ich habe das Schaufenster mit den Umkehrspiegeln wirklich so gesehen. Denn es handelt sich um ganz normal funktionierende Schmink- bzw. Rasierspiegel, die aufgrund ihrer konkaven Krümmung die gespiegelten Gegenstände vergrößert zeigen. Dies tun sie allerdings nur unter der Bedingung – die jedoch bei der normalen Nutzung erfüllt ist – dass man sich dicht vor dem Spiegel befindet. Entfernt man sich vom Spiegel so wird das Abbild immer größer bis es durch Unendlich gehend nach etwa 1 bis 2 Metern Abstand die gespiegelten Gegenstände kopfstehend zeigt. Dann befindet man sich nämlich außerhalb der Brennweite des Hohlspiegels, und in dieser Entfernung zeigt ein Hohlspiegel die Welt auf dem Kopf stehend. Vor dem Schaufenster befand ich mich weiter als die Brennweite des Spiegels entfernt und konnte gar nichts anderes erwarten als eine kopfstehende Welt. Ich gebe zu, dass ich zunächst sehr irritiert von diesem Anblick war, was dann auch dazu führte, eine normale Schaufensterauslage eines Fotos für Wert zu erachten.

Kinetische Farben auf einer Seifenblase

Wenn man das obige Foto sieht, denkt man wohl eher an ein abstraktes Kunstwerk als an einen natürlichen Vorgang. Es handelt sich dabei um einen kontrastverstärkten Ausschnitt aus einem turbulenten Geschehen auf einer Seifenblase, die hier gemeinsam mit einer Schwesterblase etwas genauer in den Blick genommen wird (unteres Foto, rechte Blase). Die Doppelblase ist auf einem Weinblatt hängen geblieben und zeigt auf ihrer Oberfläche das, was im oberen Foto ausschnittsweise wiedergegeben wird. Angefacht durch Luftbewegungen und Degenerationsprozesse in der Seifenhaut ist allerlei los auf den Blasen.

Das singende Teesieb

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2021), S. 68 – 69

Daß vom reinlichen Metalle
Rein und voll die Stimme schalle

Friedrich Schiller (1759–1805)

Trifft ein Wasserstrahl auf die Lochstruktur eines Edelstahlsiebs, ist manchmal ein Pfeifton zu hören. Er entsteht, wenn Wasserwirbel periodisch auf das Blech zurückwirken und Resonanzschwingungen anregen.

Früher wurde die Teepause von einem Pfeifen eingeläutet, heute wird sie eher damit beendet. Jedenfalls hat der Kessel für die Herdplatte mit seinem schrillen Flöten inzwischen beinahe ausgedient, während Teesiebe aus Edelstahl immer größere Verbreitung finden. Sie sorgen für ein seltsames akustisches Phänomen: Zahlreiche Videos im Internet zeigen die Utensilien, wie sie beim Reinigen im Spülbecken Töne von sich geben.

Die Zufallsentdeckung ist nach kurzem Ausprobieren leicht reproduzierbar, und unter den passenden Umständen offenbaren verschiedene Fabrikate ihre Musikalität. Zum einen muss der Wasserstrahl das Metall mit einer gewissen Geschwindigkeit treffen. Diese nimmt mit der Fallhöhe zu. Bei manchen Sieben reicht der Abstand zwischen Wasserhahn und Spülbecken nicht aus, und das Kunststück gelingt nur im Badezimmer oder mit dem Gartenschlauch. Zum anderen tönt die gelochte Fläche nur dann, wenn sie unter einem bestimmten Winkel getroffen wird. Um den für das Pfeifen optimalen Bereich zu finden, empfiehlt es sich, das Sieb unter dem Wasserstrahl ein wenig zu heben und zu senken und dabei die Neigung zu variieren. Am besten funktioniert es, indem der Strahl den flachen Boden trifft (siehe »Reinigen unter Pfiffen«). Im Lauf einer Reihe von Experimenten konnten mein Kollege Wilfried Suhr und ich sogar ein Sieb an der Mantelseite zum Tönen bringen.

Lochblech aus der Nähe: Ein Wasserstrahl durchdringt das schräg gestellte Sieb teilweise und bildet auf der Rückseite einen Wasserwulst (Pfeil), in dem die Mechanismen zur Tonentstehung ablaufen.

Der relativ kräftige Ton lässt auf eine Schwingung schließen, zu der das auftreffende Wasser das Lochblech anregt. Berührt man das Metall in der Nähe des Strahls, dämpft das den Vorgang, und das Pfeifen verschwindet. An allen übrigen Stellen kann das Sieb hingegen angefasst werden, ohne damit den Ton zu beeinflussen.

Was dabei genau passiert, hat Wilfried Suhr in einer 2020 veröffentlichten Arbeit zusammengefasst. Der auf die Siebfläche prallende Strahl wirkt wie ein mechanischer Schwingungserreger, der zum Beispiel eine Lautsprechermembran vibrieren lässt. Doch das Wasser strömt gleichförmig aus dem Hahn. Woher kommt der Rhythmus, mit dem es das Blech auslenken und in Schwingung versetzen könnte? Es genügt dafür nicht, dass es mit einer ganz bestimmten Geschwindigkeit auf einen passenden Abschnitt des Lochblechs auftrifft. Darüber hinaus muss ihm durch eine geeignete Wechselwirkung eine Frequenz aufgeprägt werden.

Den Taktgeber entdeckt man bei einem genaueren Blick auf die Auftreffstelle. Längs des geneigten Blechs staut sich eine Strömung auf, die teilweise durch die Löcher hindurch auf die andere Seite gelangt (siehe »Lochblech aus der Nähe«). Wenn man die diversen Strömungsbereiche geschickt manipuliert und den Einfluss kleiner Störungen beobachtet, findet man heraus: Die Töne werden von einem länglichen Wasserwulst unterhalb des unmittelbaren Aufpralls hervorgebracht. Dort entsteht eine zeitlich periodische Wasserbewegung – für die wiederum die regelmäßige Lochstruktur notwendige Voraussetzung ist.

Synchronisation: Schematische Darstellung der Wirbelablösung an einer gelochten Wandung. Gekoppelte Wirbelpaare des gleichen Entstehungszyklus sind gleichfarbig markiert.

Die Blechstege zwischen den Löchern spalten nämlich den Wasserstrom auf und erfüllen dabei eine ähnliche Funktion wie gespannte Saiten in einem Luftstrom. Diese lösen jeweils eine Folge paarweise entgegengesetzter Wirbel aus, eine so genannte kármánsche Wirbelstraße. Sie stoßen sich gewissermaßen vom Draht ab, woraufhin er schwingt. Wenn dabei eine seiner Eigenfrequenzen angeregt wird, gerät er in Resonanz und ruft in der umgebenden Luft periodische Verdichtungen und Verdünnungen hervor. Sie werden als Ton wahrnehmbar. So entstehen beispielsweise die Klänge einer Äolsharfe (siehe »Spektrum« November 2020, S. 52).

Ein vergleichbares, nur wesentlich komplexeres Geschehen spielt sich beim Teesieb ab. Im Bereich des Wasserwulstes entstehen hinter den regelmäßigen metallischen Stegen gleich mehrere solcher Wirbelstraßen, die hier aus Wasserwirbeln bestehen. Sie üben in ähnlicher Weise Kräfte auf die angeströmte Fläche des Siebs aus und bringen dessen Eigenschwingungen zur Resonanz. Jedes der vielen benachbarten Wirbelpaare wirkt auf dieselbe Region des Blechs zurück. Zu einer einheitlichen kollektiven Schwingung des ganzen Siebbereichs kommt es nur, wenn die Wirbel sich synchron ablösen und ihre Einzelkräfte gegenseitig verstärken (siehe »Synchronisation«). Passiert das wirklich? Fotografische Untersuchungen des Strömungsfelds an einem vergrößerten und vereinfachten Modell legen nahe, dass die Wirbel angrenzender Löcher tatsächlich aneinander koppeln, während sie sich vom Blech entfernen.

Das Phänomen ist relativ robust gegenüber Störungen. Schwingt das durchströmte Element des Siebs in Resonanz mit der Anregungsfrequenz der Wirbel, so ändert sich daran auch dann nichts, wenn die Auftreffgeschwindigkeit des Wassers in gewissen Grenzen variiert. Das schwingende Blech rastet auf die Eigenschwingung ein. Infolge dieses »Lock-in«-Verhaltens bleibt die Tonhöhe erhalten. Abweichungen zwischen Anregungs- und Resonanzfrequenz senken allerdings die Amplitude. Die verringerte Auslenkung macht sich dann in einer entsprechend abnehmenden Lautstärke bemerkbar.

Bei einem Exemplar eines Teesiebs ist es uns durch Variation der Falldistanz des Wassers sogar gelungen, unterschiedliche Eigenschwingungen des Lochblechs in Resonanz zu versetzen und damit Pfeifgeräusche verschiedener diskreter Frequenzen anzuregen. Mit der Länge des Strahls wuchs auch die jeweilige Tonhöhe. Bei Fallhöhen zwischen zwei Tonstufen und außerhalb des Lock-in-Bereichs verstummte das Teesieb jedoch.

Quelle

Suhr, W.: Pfeiftöne vom Teefilter. Physik und Didaktik in Schule und Hochschule, 2020

Originalpublikation

Virtuelle Herausforderung

Es ist wahrlich kein erbauendes Gefühl, sich selbst zwar verdoppelt aber kopflos gegenüberzustehen. Und da sage doch jemand, Spiegel seien verlässlich. Rein physikalisch gesehen sind sie es auch: Einfallswinkel = Reflexionswinkel und erst dadurch entsteht das Malheur. Ein gewellter, eingedellter Spiegel kann eben auch nur ein gewelltes und gedelltes Abbild hervorbringen. Dabei kann es je nach Blickwinkel neben abenteuerlichen Verzerrungen zu Überlagerungen und Verdeckungen, wobei oft entscheidende Partien einer Person dem Blick entzogen werden*.
Dennoch oder vielleicht auch deshalb sind solche meist in Science Centern mehr zur Belustigung als zur Aufklärung aufgestellten Zerrspiegel sehr beliebt. Das Vergnügen, sich in der Spiegelwelt je nach Position und Blickwinkel deformiert und depriviert, aber trotzdem nicht deprimiert zu sehen, resultiert vielleicht auch daraus, dass man im tiefsten Inneren die ebenso tiefe Überzeugung spürt, trotzdem in Wirklichkeit wirklich alles beieinander zu haben. Ich habe Kinder erlebt, die nach einigen Spielchen mit dem Zerrspiegel anschließend zum manchmal daneben angebrachten Planspiegel gegangen sind, vielleicht um sich ihrer körperlichen Integrität zu versichern. Man kann ja nie wissen.
Wenn Ödön von Horváth (1901 – 1938) in diesem Zusammenhang meint:
Mancher müßte in einen Zerrspiegel schauen,
um erträglich auszusehen,

so steckt angesichts des Fotos dahinter schon eine ganze Portion Bosheit.


* Wer kein Science-Center u. Ä. in der Nähe hat, kann sich mit den wandelnden Zerrspiegeln auf den Straßen und Parkplätzen vergnügen. Besonders die gut geputzten Karossen zeigen exzellente Verzerrungen.

Lichtinstallation im Kleinen

Was am Tag wie eine reichlich verzierte (kitschige) Vase aussieht zeigt ihr wahres Gesicht in der Nacht. Es ist nämlich gar keine Vase, sondern ein High-Tech-Produkt. Es enthält im oberen Teil eine Solarzelle, die tagsüber aus Sonnenenergie elektrische Energie gewinnt, die in einem kleinen Akku gespeichert und bei Dunkelheit wieder zurückverwandelt wird in Lichtenergie. Da sich die Lampe, die das Licht aussendet, nunmehr im unteren Teil der Vase befindet, werden die transparenten, in allerlei Formen strukturierten Fensterchen der perspektivischen Verzerrung entsprechend in unterschiedlichen Größen auf dem Tisch abgebildet.
Erstaunlich war für mich, wie lange doch die gespeicherte Energie dank der effektiven Lichtquelle und der inzwischen ebenfalls verbesserten Wirkungsgrads der Solarzelle und des Akkus die kleine Lichtinstallation am Leben erhielt.

Mohnsamenschießen

In der letzten Zeit sieht man von den Mohnblumen meist nur noch die Samenkapseln, die allerdings an Schönheit und Interessantheit den Blüten kaum nachstehen. Bläst man gegen die kleinen Öffnungen unterhalb des Kapseldaches, so kommen die inzwischen entstandenen winzigen Samen vom Luftstrom angehoben und beschleunigt geradezu herausgeschossen. Das funktioniert ähnlich wie bei einer Fixativspritze, bei der man durch Pusten Flüssigkeiten versprüht. Daher lagern die Samenkörner auch in kleinen Kammern, die strahlenförmig um die Symmetrieachse der Kapsel angeordnet sind. Denn je kleiner der Querschnitt, desto größer die Geschwindigkeit der Strömung. Durch diese Technik erreicht der Mohn, dass die Samenkörner bis zu einigen Metern von der Pflanze entfernt fliegen, wodurch eine weitere Ausbreitung gewährleistet wird.
Die vorliegende Kapsel ist 15 mm hoch und hat 12 Kammern. Die Zahl variiert von Pflanze zu Pflanze und kann einige Kammern mehr oder weniger haben. Hält man die Kapsel ans Ohr und schüttelt sie vorsichtig, so hört man ein sehr feines Rasseln der winzigen Körnchen. Wenn man eine noch gefüllte Kapsel vorsichtig auf einem Blatt Papier entleert, ist man meist erstaunt, wie viele Körnchen darin Platz haben. Ich habe sie nicht gezählt, aber es sollen 2000 bis 5000 Stück sein. Sie sind aber auch sehr klein, meist kleiner als 1 mm im Durchmesser.

Buntes weißes Licht

Additive Farbmischung

Im Zentrum ist eine weiße Fläche auf einer Wand, die von drei gegeneinander verschobenen Scheinwerfern mit verschieden farbigem Licht angestrahlt wird. Da es sich um Grundfarben Rot, Grün und Blau handelt ist die Überlagerung weiß (additive Farbmischung). Vor die weiße Fläche hat sich ein Kind gestellt und macht allerlei Bewegungen, weil es von farbigen Schatten fasziniert ist, die durch die Abschattung des einen oder anderen Scheinwerfers entstehen. Dabei zeigt sich, dass bei Überlagerungen von Blau und Rot die Farbe Magenta (Grün wird in diesen Bereichen von der Person verdeckt), von Grün und Blau die Farbe Cyan (Rot wird abgedeckt) und von Rot und Grün die Farbe Gelb (Blau wird abgedeckt) hervorgehen. Nur an wenigen Stellen werden gleich zwei Farben abgedeckt, sodass jeweils der Grundfarbe an der Wand zu sehen ist. Dort wo alle drei Farben verdeckt sind, kommt kein Licht hin und die Wand bleibt schwarz.
Es fällt vielen Menschen schwer sich vorzustellen, dass das weiße Licht ein Gemisch aus bunten Farben darstellt. Aber wenn man die hier als Spielerei in einem Science Center inszenierten Experimente ein wenig auf sich wirken lässt, kann man kaum umhin, diesen im Rahmen der Physik wohl erstmalig von Isaak Newton beschriebenen Sachverhalt zu akzeptieren.

Weiterlesen

Schatten und Spiegelung

In diesem auf den ersten Blick surreal wirkenden Ausschnitt aus einem Hafenbecken beobachtet man zwei Abbildungen der von der Sonne beschienenen Gegenstände auf dem Wasser. Man ist vielleich geneigt, sie als Schatten abzutun. Schaut man sich die Dinge genauer an, so erkennt man, dass die Treppe und das Geländer einerseits eine Abbildung direkt unter dem Original aufweist und eine weitere aus anderer Perspektive rechts daneben. Aber ein Foto kann die Dinge nicht zugleich aus zwei Perspektiven zeigen. Vielmehr handelt es sich im ersteren Fall um keinen Schatten sondern um eine Spiegelung der Brücke und im letzteren um einen Schatten, der von der links strahlenden Sonne hervorgerufen wird.
Genau genommen kann auf dem Wasser kein Schatten entstehen. Wenn aber das Wasser wie im vorliegenden Fall mit Schwebstoffen verunreinigt ist, an denen das Sonnenlicht gestreut wird, erscheinen die von den schattenwerfenden Gegenständen ausgeblendeten Bereiche dunkel, weil uns von dort kein bzw. wesentlich weniger Licht erreicht.
Entsprechendes beobachtet man bei den beiden Pfählen. Aus der Perspektive des Fotos erscheint die Spiegeung wie eine Verlängerung der Pfähle und man muss schon genau hinschauen, wo der reale Pfahl endet und die Spiegelung beginnt. Von dieser Stelle gehen die horizontal orientierten „Schatten“ der Pfähle im Wasser aus. Sie haben einen deutlichen Blaustich, weil zwar das Sonnenlicht ausgeblendet wird, das blaue Himmelslicht diese sonnenlichtfreien Streifen aber erreicht und von dort diffus reflektiert wird.

Seifenblasen lieben sechs

Im Science Center Universum in Bremen, das ich gelegentlich besuche, so wie man einen Park oder ein Kunstmuseum immer mal wieder aufsucht, werden alltägliche Gegenstände und Vorgänge oft allein durch die Art wie sie in Szene gesetzt werden auf meist herausfordernde Weise hinterfragt.
Hier Blickt man auf eine Doppelglaswand zwischen deren Scheiben sich Seifenblasen teilweise zu Schaum zusammengetan haben. Das hat den Vorteil, dass sich mehrere Blasen eine Wand teilen und dabei Grenzflächenenergie einsparen können. Denn für die Integration einer Glasscheibe ist weniger Energie nötig als für die Ausbildung einer eigenen Lamelle mit der Luft. Wenn es die Situation ermöglicht, werden die Schaumpolygone eine hexagonale Struktur annehmen, weil in diesen Fällen die Grenzfläche minimal ist. Die ist an einigen Stellen ansatzweise realisiert (siehe den Ausschnitt im unteren Foto).
Überdies sollte nicht vernachlässigt werden, dass die Struktur ästhetisch ansprechend ist. Es vereinigen sich hier wieder einmal die Notwendigkeit zur Energieminimierung des Systems (maximal viel Energie an die Umgebung abzugeben (2. Hauptsatz der Thermodynamik)) und der Zufall, der bei der konkreten Ausbildung der Seifenzellenstruktur eine wesentliche Rolle spielt.

Die Spiegelung bringt es an den Tag

Ein metallener Aschenbecher auf dem Tisch in einem Biergarten erscheint makellos verchromt. Das Gesicht der gegenüber sitzenden Person wird ziemlich perfekt gespiegelt. Nichts weist auf eine mögliche Strukturierung der Oberfläche hin. Aber wie so oft, bringt es die Sonne an den Tag. Wie man am Schatten (rechts oben) erkennt, fällt das Sonnenlicht von schräg links ein und streift einen Teil der vorderen Seite des Aschenbechers und wird dabei reflektiert. Die Reflexion ist gut zu erkennen, weil das Licht in einen Schattenbereich im Vordergrund des Bildes fällt. Ansonsten wäre das Phänomen kaum aufgefallen.
Man erkennt zahlreiche senkrechte Linien, die auf eine entsprechende Strukturierung schließen lassen. Sie deuten vermutlich auf den Herstellungsprozess hin. Vielleicht ist beim Biegen des verchromten Blechs der konvexe Bereich des Bechers so stark gedehnt worden, dass eine feine Rissstruktur senkrechter Riefen entstanden ist. Jedenfalls wird eine solche durch die Reflexion entlarvt. Das Phänomen, dass in der Reflexion etwas zu erkennen ist, was dem direkten Anblick verborgen bleibt, erinnert an den Chinesischen Zauberspiegel, bei dem ein eingeprägtes Muster auch erst Spiegelbild des Spiegels erkennbar wird.

Vom Quadrat zum Kreis

Die Quadratur des Kreises gehört zu den ungelösten geometrischen Problemen. Die Umkehrung, die darin besteht, aus einem Quadrat einen Kreis hervorgehen zu lassen. bringt die Natur mit Leichtigkeit zuwege. Dafür haben wir in dem Foto ein schönes Beispiel.
Über dieser farbenprächtigen Tür ist ein Holzgitter angebracht. Es soll dereinst ein Rankgewächst stützen, das sich gerade anschickt, an den Seiten hochzuwachsen. Vorerst muss man mit dem schräg auf die Tür fallenden Schatten des Gitters vorlieb nehmen. Je weiter die schattengebenden Löcher des Gitters von der Tür entfernt sind, desto stärker runden sich die Löcher der zugehörigen Schatten ab.
Man erkennt es daran, dass die Schatten im oberen Bereich der Tür noch ziemlich genau die rechteckige Struktur des Gitters wiedergeben, während die Schatten im unteren Bereich immer mehr von der quadratischen Form des Gitters abweichen. Wie kommt das?

Das Valett-Federpendel – Ein Künstler mit Physik

Christian Ucke, H. Joachim Schlichting. Physik in unerer Zeit 52/4 (2021), S. 197 – 199

Die Schwingung wechselt selbsttätig zwischen auf und ab und hin und her

Die Verbindung von physikalisch-mathematischen Experimenten mit künstlerisch-handwerklicher Inspiration bringt überraschende Kreationen hervor. Jochen Valett hat ein besonderes Federpendel geschaffen.

Eine mit einem passenden Körper belastete vertikal ausgelenkte Schraubenfeder führt eine harmonische Schwingung aus. Dabei verkürzt und verlängert sich die Länge der Feder periodisch. Durch nicht zu vermeidende winzige seitliche Auslenkungen des Schwingers entsteht zusätzlich eine Art Fadenpendel, das mit dem Federpendel gekoppelt ist. Wenn beide Schwingungsarten in der Weise aufeinander abgestimmt sind, dass die Periode der vertikalen Auf- und Abbewegung gerade die Hälfte der Periode der seitlichen Hin- und Herbewegung entspricht, so treiben sich die beiden Schwingungen wechselseitig an – es kommt zur Resonanz. Sie besteht darin, dass die vertikale Schwingung die seitliche Pendelschwingung aufschaukelt bis sie selbst zur Ruhe gekommen ist und dann umgekehrt die Pendelschwingung die vertikale Schwingung antreibt usw. Auf diese Weise kommt es zu einem periodischen Wechsel zwischen reiner Auf- und Abbewegung und reiner Hin- und Herbewegung (siehe: Metapendel).

Schaut man sich das Federpendel bei der Auf- und Abbewegung genauer an, so entdeckt man, dass sich die Feder bei jeder Abwärtsbewegung zwangsläufig ein wenig abwickelt, weil durch die Verlängerung der Pendellänge die Drahtlänge pro Windung größer wird. Bei der Aufwärtsbewegung ist es dann genau umgekehrt und die Feder wickelt sich ein wenig auf. Durch die damit verbundene, an den Enden der Feder gut zu beobachtende leichte Drehung um eine gedachte senkrechte Achse wird auf den Körper ein Drehmoment jeweils in der einen oder anderen Richtung ausgeübt. Dabei wird Translationsenergie in Rotationsenergie verwandelt.

Umgekehrt führt die Drehung des Körpers dazu, dass die Feder ein wenig auf- oder abgewickelt wird, wodurch die Zugkraft der Feder entsprechend variiert wird. Bei einer Abwicklung wird die Zugkraft der Feder kleiner und der Körper sinkt weiter herab, während bei einer Aufwicklung die Zugkraft zunimmt und der Körper infolgedessen höher aufsteigt.

Stimmt man nun ähnlich wie bei der Kopplung zwischen Feder- und Fadenpendel durch geeignete Maßnahmen die Perioden zwischen Feder- und Torsionspendel aufeinander ab, so erreicht man ähnlich wie bei der Kopplung zwischen vertikaler und seitlicher Schwingung, dass ein permanenter Wechsel zwischen Rotation- und Translationsschwingung bewirkt wird. Um das zu bewerkstelligen, bleibt einem nichts anderes übrig, als das Trägheitsmoment des Pendelkörpers an die Gegebenheiten anzupassen, denn an den Eigenschaften der Feder lässt sich kaum etwas verändern.

Ein solches in regelmäßiger Weise zwischen Translation und Rotation wechselndes Pendel wurde 1894 von dem Engländer Lionel Robert Wilberforce konstruiert. Es ist auch heute noch ein verbreitetes Demonstrationsgerät in physikalischen Praktika und zeigt sehr anschaulich das Phänomen gekoppelter Schwingungen. Als Pendelkörper dient meist ein Metallzylinder, an dem senkrecht zur Achse Gewindestangen mit drehbaren Muttern fixiert sind (Abb. 1). Indem man die Muttern zum Zylinder hin oder von ihm weg dreht, kann das Trägheitsmoment sehr fein variiert und die Resonanzsituation genau einjustiert werden. Weiterlesen im PDF-File

Die Einreichversion dieses Aufsatzes kann als PDF-file heruntergeladen werden.

Eine Trinkflasche mit Regenbogenambitionen

Eine transparente Plastiktrinkflasche steht auf der Fensterbank im Sonnenlicht. Dieses fällt etwas nach links verschoben von vorn oben ein. Abgesehen von einer intensiven Lichtstreuung im oberen Bereich der Flasche, die so intensiv ist, dass die Details überstrahlt werden, fallen einige spektralfarbene Streifen auf.

Zum einen fällt ein regenbogenfarbiger Teilkreis auf ein Blatt weißes Papier, das ich der besseren Sichtbarkeit vor mir auf den Schreibtisch gelegt habe. Er entsteht dadurch, dass das Licht beim schrägen Auftreffen auf die Wasseroberfläche in der Flasche gebrochen wird. Die gerundete Wasserschicht wirkt gewissermaßen wie ein Prisma, durch das das weiße Licht zum Einfallslot hin gebrochen wird und zwar zunächst beim Auftreffen auf das Wasser und anschließend beim Verlassen des Wassers. Weil es dabei auf eine kreisrunde Front trifft wird es nicht nur nach unten, sondern auch zur Seite abgelenkt. Dadurch ergibt sich in der Projektion auf dem Tisch, ein runder Lichtstreifen, der länger ist als der Querschnitt der Flasche.

Da der Brechungsindex nicht nur vom brechenden Material, dem Wasser, abhängt, sondern auch von der Wellenlänge des Lichts, wird das Licht unterschiedlicher Wellenlängen unterschiedlich stark gebrochen: kurwelliges Licht (vor allem Blau) wird stärker (zum Einfallslot hin) gebrochen als langwelliges (vor allem Rot). Daher liegt der rote Streifen außen und der blaue innen. Ganz sauber gelingt die Aufspaltung in Farben nicht, weil die Kunststoffwand der Flasche nicht ganz homogen ist.

Zum anderen beobachtet man zwei spektralfarbene Streifen auf dem unteren Teil des Fensterrahmens. Sie kommen dadurch zustande, dass das unterhalb der Wasseroberfläche einfallende Sonnenlicht zunächst gebrochen und dadurch nicht nur zum Einfallslot hin abgelenkt, sondern auch spektral zerlegt wird. Anschließend trifft das sich auf diese Weise verjüngende Lichtbündel auf die Innenwand der Flasche (auf die man blickt), wird dort teilweise reflektiert und schließlich beim Wiederaustritt aus der rückwärtigen Wand der Flasche abermals gebrochen. Dabei tritt wie bei der Entstehung eines Regenbogens in einem Wassertropfen eine deutliche Verstärkung des Lichts auf, so dass zu jeder Seite bei einem bestimmten Winkel ein farbiger Streifen zu sehen ist. Jenseits dieses Winkels kommt kein Licht mehr an. Die im übrigen Bereich gebrochenen farbigen Lichtstrahlen mischen sich wieder zu weißem Licht. Wir haben wir es also hier mit einem regenbogenartigen Phänomen zu tun, das wegen der Zylindergeometrie der Flasche jedoch nur auf eine Ebene beschränkt ist.

Schließlich sieht man innerhalb der Flasche noch so etwas wie ein helles Rechteck. Es kommt dadurch zustande, dass ein Teil des durch die Flasche hindurchstrahlenden Lichts  beim Durchgang durch die Kunststoffwand teilweise an Inhomogenitäten des Materials gestreut und gebrochen wird. Es gelangt auf diesem Wege ins Auge des Betrachters gerät und wird sichtbar.

Spiegelwirbel an einer Hausfassade

Als wir in intensiver Unterhaltung vor jener verspiegelten Fassade vorbeigingen (siehe Foto), in der ich gewissermaßen aus dem Augenwinkel die diesseitige Welt zwar unzugänglich und doch irritierend realistisch gedoubled im Schritttempo vorbeiziehen sehe, spürte ich plötzlich so etwas wie einen Sog. Die Unterhaltung war nicht mehr ernsthaft aufrechtzuerhalten. Wir blieben stehen und erkannten die Ursache für das merkwürdige Gefühl: Die Spiegelwand war mit einer Art Spiegelwirbeln belegt, die Teile des Abgebildeten um ominöse Mittelpunkte herum zu wickeln schienen. Als rational denkende Menschen glaubten wir natürlich nicht, den sagenhaften Aleph-Punkt gefunden zu haben, zumal es dann sehr viele davon gab. Und daher näherten wir uns der Fassade und stießen auf eine ganz profane Erklärung des Phänomens. Im Zentrum eines jeden Spiegelwirbels war der Kopf einer ordinären Schraube zu sehen, durch die ein riesiges spiegelndes blankes Blech fixiert wurde (siehe Foto). Durch die Spannung, mit der das Blech an den gewissen Stellen aus der Ebene heraus in eine vertiefte Position gezogen wurde, waren lokale Hohlspiegel geformt worden, die die Gegenstände entsprechend kreissymmetrisch verzerrt widergaben.

…und unter mir die Spiegelwelt

Als ich dieses Gebäude betrat (oberes Foto), wunderte ich mich weniger über die nahezu perfekten Spiegelungen im glatten Fliesenboden als über die Menschen, die darüber gingen als wäre es nichts oder vielmehr ein normaler Boden. Ich selbst hatte längst die Unschuld verloren und musste das Gehirn einschalten, um die Tiefen in die Spiegelwelt, die sich da vor mir auftaten als begehbar und nur von virtueller Tiefe anzusehen. Dabei erwies es sich als äußerst günstig, dass ich nicht vorausschauend in diese glitzernde Mischung aus Realität und Virtualität ging, sondern direkt nach unten blickte. Denn in diesem Fall sah man statt einer Tiefe einen zwar glänzenden aber soliden Fußboden mit schwarzen Marmorfliesen (unteres Foto). Andere Menschen, die hier aus und eingingen machten sich überhaupt keine Gedanken vor allem nicht solche, die mich beschäftigten.
Alice hinter den Spiegeln hatte es da einfacher, sie ging durch einen normalen, also vertikal aufgestellten Spiegel. Dort drohte kein Sturz in die Tiefe. Allerdings waren die Abenteuer, die sie in der Spiegelwelt durchleben musste, nicht ganz ohne.

Ab heute begebe ich mich für einige Tage in eine netzfreie Region, sodass ich erst später auf evtl. Kommentare reagieren kann. Ich habe aber mit einigen Beiträgen vorgesorgt. 🙂



Photoarchiv