//
Artikel Archiv

Rubriken: „Spielwiese“ und „Blickwinkel“

Diese Kategorie enthält 127 Beiträge

Das Valett-Federpendel – Ein Künstler mit Physik

Christian Ucke, H. Joachim Schlichting. Physik in unerer Zeit 52/4 (2021), S. 197 – 199

Die Schwingung wechselt selbsttätig zwischen auf und ab und hin und her

Die Verbindung von physikalisch-mathematischen Experimenten mit künstlerisch-handwerklicher Inspiration bringt überraschende Kreationen hervor. Jochen Valett hat ein besonderes Federpendel geschaffen.

Eine mit einem passenden Körper belastete vertikal ausgelenkte Schraubenfeder führt eine harmonische Schwingung aus. Dabei verkürzt und verlängert sich die Länge der Feder periodisch. Durch nicht zu vermeidende winzige seitliche Auslenkungen des Schwingers entsteht zusätzlich eine Art Fadenpendel, das mit dem Federpendel gekoppelt ist. Wenn beide Schwingungsarten in der Weise aufeinander abgestimmt sind, dass die Periode der vertikalen Auf- und Abbewegung gerade die Hälfte der Periode der seitlichen Hin- und Herbewegung entspricht, so treiben sich die beiden Schwingungen wechselseitig an – es kommt zur Resonanz. Sie besteht darin, dass die vertikale Schwingung die seitliche Pendelschwingung aufschaukelt bis sie selbst zur Ruhe gekommen ist und dann umgekehrt die Pendelschwingung die vertikale Schwingung antreibt usw. Auf diese Weise kommt es zu einem periodischen Wechsel zwischen reiner Auf- und Abbewegung und reiner Hin- und Herbewegung (siehe: Metapendel).

Schaut man sich das Federpendel bei der Auf- und Abbewegung genauer an, so entdeckt man, dass sich die Feder bei jeder Abwärtsbewegung zwangsläufig ein wenig abwickelt, weil durch die Verlängerung der Pendellänge die Drahtlänge pro Windung größer wird. Bei der Aufwärtsbewegung ist es dann genau umgekehrt und die Feder wickelt sich ein wenig auf. Durch die damit verbundene, an den Enden der Feder gut zu beobachtende leichte Drehung um eine gedachte senkrechte Achse wird auf den Körper ein Drehmoment jeweils in der einen oder anderen Richtung ausgeübt. Dabei wird Translationsenergie in Rotationsenergie verwandelt.

Umgekehrt führt die Drehung des Körpers dazu, dass die Feder ein wenig auf- oder abgewickelt wird, wodurch die Zugkraft der Feder entsprechend variiert wird. Bei einer Abwicklung wird die Zugkraft der Feder kleiner und der Körper sinkt weiter herab, während bei einer Aufwicklung die Zugkraft zunimmt und der Körper infolgedessen höher aufsteigt.

Stimmt man nun ähnlich wie bei der Kopplung zwischen Feder- und Fadenpendel durch geeignete Maßnahmen die Perioden zwischen Feder- und Torsionspendel aufeinander ab, so erreicht man ähnlich wie bei der Kopplung zwischen vertikaler und seitlicher Schwingung, dass ein permanenter Wechsel zwischen Rotation- und Translationsschwingung bewirkt wird. Um das zu bewerkstelligen, bleibt einem nichts anderes übrig, als das Trägheitsmoment des Pendelkörpers an die Gegebenheiten anzupassen, denn an den Eigenschaften der Feder lässt sich kaum etwas verändern.

Ein solches in regelmäßiger Weise zwischen Translation und Rotation wechselndes Pendel wurde 1894 von dem Engländer Lionel Robert Wilberforce konstruiert. Es ist auch heute noch ein verbreitetes Demonstrationsgerät in physikalischen Praktika und zeigt sehr anschaulich das Phänomen gekoppelter Schwingungen. Als Pendelkörper dient meist ein Metallzylinder, an dem senkrecht zur Achse Gewindestangen mit drehbaren Muttern fixiert sind (Abb. 1). Indem man die Muttern zum Zylinder hin oder von ihm weg dreht, kann das Trägheitsmoment sehr fein variiert und die Resonanzsituation genau einjustiert werden. Weiterlesen im PDF-File

Die Einreichversion dieses Aufsatzes kann als PDF-file heruntergeladen werden.

Ein Lichtblick im Schatten

H. Joachim Schlichting. Physik in unseer Zeit 52/4 (2021), S. 204

Ein Stein, der unter Wasser in einen Schatten gerät, reflektiert blaues Himmelslicht.

In der Badesaison können wir ein optisches Phänomen beobachten, über das sich genauer nachzudenken lohnt. Dazu stellen wir uns vor, dass eine Person bis zur Taille im klaren Wasser steht und auf die Kaustiken schaut, die durch die Wellen auf dem Sandboden projiziert werden.

Auf dem Foto in der oberen Abbildung sieht man den Schatten dieser Person auf dem Boden des Gewässers. Die Schattenränder erscheinen wegen der Unebenheit des Bodens und vor allem der welligen Wasseroberfläche mehr oder weniger stark deformiert. Die Kaustiken reichen aufgrund der Brechung des Lichts an der gewellten Wasseroberfläche teilweise bis in den Bereich des geometrischen Schattens hinein, der ansonsten weitgehend dunkel ist. Da das in den Kaustiken fokussierte Licht an anderen Stellen fehlt, erscheinen diese Bereichen dunkler, obwohl der Boden aus typisch hellem gelben Sand besteht.

Schaut man sich das Foto genauer an, so entdeckt man einen blauen Fleck im Bauchbereich des Schattens, der im Kontrast zum dunklen Schatten zu leuchten scheint. Dabei handelt es sich nur um einen auf dem Grund liegenden Stein (untere Abbildung). Auf den ersten Blick erscheint es äußerst rätselhaft, dass der Stein überhaupt im Schattenbereich zu sehen ist, also mehr Licht ausstrahlt als die Umgebung. Da der bei Tageslicht weiß erscheinende Stein (Abbildung 3) kaum selbstleuchtend sein dürfte, kann das Licht nur vom blauen Himmel stammen. Anders als das Sonnenlicht hat dieses ja von den Seiten freien Zugang zum Stein und wird entsprechend von diesem reflektiert.

Bei diesen beiden Steinen im Sonnenlicht unter Wasser erkennt man rechts unten die für den Effekt wichtige weiße Farbe des Steins.

Hier ergibt sich fast zwangsläufig die Frage, warum der sandige Untergrund nicht ebenfalls eine blaue Färbung annimmt. Im Sonnenlicht, das alle Spektralfarben enthält, erscheint der Sandboden gelb, weil er vor allem die Komplementärfarbe, also blaues Licht absorbiert. Das blaue Himmelslicht wird daher weitgehend vom Sandboden absorbiert, sodass dessen diffuse Reflexion kaum zur Aufhellung des solaren Schattenbereichs beiträgt.

Der weiße Stein, der so gut wie alle Farben, also auch das Blau, reflektiert, erscheint demgegenüber im Vergleich zur Umgebung stark aufgehellt. Hinzu kommt, dass er merklich über den flachen Grund hinausragt und daher vor allem an den Seiten aufgehellt wird.

.

.

Die Fotos stammen aus einem Beitrag von Gerda Kazakou. Ich bedanke mich für die Abdruckgenehmigung.


Von heute an nehme ich wieder mal eine Auszeit in der netzfreien Zone und kann wEder auf kommentare reagieren noch Gegenbesuche abstatten. Ich habe aber mit einigen Posts in dieser Zeit vorgesorgt 🙂

 

Partielle Sonnenfinsternis oder „Die angeknabberte Sonne“

Weiterlesen

Magneto-hydrodynamischer Bootsantrieb – Vortrieb ohne Schraube

H. Joachim Schlichting, Jan Schlichting. Physik in unserer Zeit 52/3 (2021), S. 146 – 148

Skizze zum Waterloo-Bridge-Experiment. Faraday steht auf der Brücke und misst mit einem Galvanometer die Spannung zwischen den beiden Elektroden (Grafik:Museum of Innovation and Science, Schenectady).

Ein Bootsantrieb, der ohne lärmende Schraube auskommt? Der magneto-hydrodynamische Antrieb macht es möglich.

In der Hollywoodverfilmung „Jagd auf roter Oktober“ aus dem Jahre 1990 ist von einem U-Boot die Rede, das sich lautlos fortbewegen kann, weil der Antrieb keine bewegten mechanischen Teile besitzt und daher keine verräterischen Geräusche aussendet [1]. Der Antrieb wurde durch das magneto-hydrodynamische (MHD) Prinzip besorgt, durch das es möglich ist, elektrische Energie direkt in Bewegungsenergie des Wassers umzuwandeln und damit ein Schiff anzutreiben.

Publikation

Geheimnisvolle Farben im Fenster

H. Joachim Schlichting. Physik in unserer Zeit 52/3 (2021), S. 151

Manche Kunststofffolie kann zu intensiven Farberscheinungen führen, wenn durch sie hindurchtretendes (polarisiertes) Himmelslicht unter dem Brewster-Winkel ins Auge des Betrachters reflektiert wird.

Manche Farben sind gar keine und man sieht sie trotzdem und zwar dort, wo sie nicht sind. Das kann man mit bewusst in Kauf genommener Paradoxie an den in prächtigen Farben leuchtenden Oberlichtfenstern des oberen Fotos sehen. Bei den Fensterscheiben handelt es sich um normale Floatglasscheiben, wie man sie überall in der Umwelt vorfindet. Die bunten Farben in denen sie erstrahlen werden an einer ganz anderen Stelle „erzeugt“. Das erkennt man u.a. daran, dass die Kunststoffrahmen der Fenster das farbige Licht reflektieren.

Verantwortlich für die Entstehung der Farben ist eine Kunststofffolie, mit der das schräge gläserne Vordach (unteres Foto rechts) überzogen ist. Die Folie wurde vermutlich aus Sicherheitsgründen angebracht, um beim eventuellen Bruch der Scheiben, die Fragmente zusammenzuhalten. In dem Ausschnitt des Glasdachs (unteres Foto links) kann man die Folie infolge kleiner Aufwellungen an der Kante sogar erkennen.

Diese Folie hat die – vermutlich nicht beabsichtigte – Eigenschaft, wie manche Kristalle doppelbrechend zu sein. Das heißt, wenn sie von polarisiertem Licht durchdrungen wird, treten zwei Teilwellen unterschiedlicher Geschwindigkeit auf. Diese führen dazu, dass ihre jeweiligen Phasen nicht mehr in derselben, sondern in unterschiedlichen Ebenen gleich sind. Davon würde man normalerweise gar nichts merken, wenn das in dieser Weise modifizierte Licht nicht auf die Oberlichtscheiben aufträfe und von diesen unter einem bestimmten Winkel, dem sogenannten Brewster Winkel, ins Auge des Betrachters reflektiert würde. Denn unter diesem Winkel wird das Licht abermals polarisiert, wobei die verschiedenen Ebenen der Teilwellen wieder zusammenfallen und interferieren. Aufgrund der durch die Doppelbrechung bewirkten Phasenverschiebung, kommt es zu Verstärkungen und Abschwächungen bestimmter Wellenlängen des sichtbaren Lichts, d.h. zu einzelnen Farben.

Die Voraussetzung, dass das auffallende Licht polarisiert ist, wird immer dann erfüllt, wenn es bei klarem blauem Himmel aus einer Region kommt, die senkrecht zur Strahlrichtung der Sonne orientiert ist. Und dass man die Scheibe nun gerade unter dem Brewsterwinkel betrachtet, ist kein Zufall. Denn bereits in der Nähe dieses Winkels ist die Polarisationswirkung bereits so stark, dass die Farben bereits schemenhaft zu erkennen sind. Sobald man aber etwas Farbiges bemerkt, dessen Intensität mit der Blickrichtung variiert, justiert man den Blick meist automatisch so, dass die Farben besonders deutlich wahrgenommen werden – und das ist unter dem Brewster-Winkel der Fall.

Ich selbst habe das Phänomen zum ersten Mal in einem Nahverkehrszug beobachtet. Dort zeigten sich die Farben auf einer gläsernen Zwischenwand, über die die Reflexionen der hell beschienenen Außenwelt huschten. Deren Licht war vorher durch das Fenster des Zuges auf der Innenseite der Scheibe angebrachte Kunststofffolie gefallen. Diese Folie, die die Scheibe gegen mutwilliges Zerkratzen schützen sollte, war ebenfalls doppeltbrechend und damit ursächlich für die Farberscheinungen verantwortlich. Das wurde mir allerdings erst einige Zeit später klar, als ich an einem Fenster das Vorhandensein einer solchen Folie dadurch erkannte, dass diese offenbar bei dem Versuch die Scheibe zu zerkratzen beschädigt worden war.

Übrigens lässt sich die Farberscheinung in großer Deutlichkeit mit einer Overheadfolie hervorrufen, die man zwischen zwei Polarisationsfolien legt. Dieses nach einem ihrem Erfinder Michael Berry „Berry Sandwich“ [1] benannte Folienset macht es möglich, das Phänomen mit jeder Lichtquelle hervorzubringen. Im polarisierten Licht (z.B. bei blauem Himmel) kann man die äußere Folie sogar weglassen.

.

Literatur

[1] Michael Berry et al. Black plastic sandwiches demonstrating biaxial optical anisotropy. European Journal of Physics 20 (1999), 1–14

Originalbeitrag

Heiße Experimente – Physik in der Sauna

H. Joachim Schlichting, Christian Ucke. Physik in unserer Zeit 52/2 (2021), S. 94 – 97

In einer Sauna herrschen ungewöhnliche thermische Bedingungen. Ein Saunagang lässt sich daher leicht zu einer Experimentalsituation umfunktionieren. Thermometer, Sanduhr, Hygrometer und oft auch eine Waage stehen standardmäßig zur Verfügung. Gegenstand der Experimente ist vor allem der eigene Körper. Weiterlesen

Unscheinbare Blätter mit interessanter Wirkung

H. Joachim Schlichting. Physik in unserer Zeit 52/1 (2021), S. 43

Blätter von Bäumen können als Isolatoren und Absorber von Wärme fungieren und dank dieser Eigenschaft im Winter zu auffälligen und physikalisch interessanten Erscheinungen führen.

 Eigentlich gehören die im Herbst abgeworfenen Blätter nicht in den Winter. Sie werden auch kaum wahrgenommen. Es sei denn, sie stellen sich für eine auffällige physikalische Demonstration zur Verfügung.
Im vorliegenden Fall hat es zum ersten Mal geschneit. Weiterlesen

Miniexplosionen in der Küche – Thermodynamische Aspekte von Popcorn

H. Joachim Schlichting, Christian Ucke. Physik in unserer Zeit 51/6 (2020), S. 302 – 304)

Puffmaiskörner verhalten sich bei Zufuhr von Wärme wie kleine Dampfkessel. Das in ihnen vorhandene Wasser verdampft teilweise und führt schließlich zur Explosion der Körner, wobei die geschmolzene Stärke zu einem Schaum aufgeblasen wird.  

Wer sich im Kino an den Geräuschen stört, die mit dem Verzehr von Popcorn bzw. Puffreis einhergehen, sollte sich vielleicht damit trösten, dass diese luftigen und leichten Gebilde den größten Krach bereits hinter sich haben. Den geben sie bei ihrer Geburt von sich, wenn sie mit einem vernehmlichen dumpfen Knall aus einem unscheinbaren Maiskorn hervorgehen. Das dabei vermittelte Gefühl, es mit relativ viel Energie zu tun zu haben, erscheint durchaus gerechtfertigt. Denn die steinharten Körner, an denen man sich ansonsten die Zähne ausbeißen würde, geben sich erst unter großer Hitzeeinwirkung bei einer Temperatur von etwa 180° C geschlagen. Dann blähen sie sich schlagartig zu einem zerfurchtes pilzartigen Gebilde auf, das nicht die geringste Ähnlichkeit mit dem ursprünglichen Korn aufweist. Lediglich die kleinen braunen Einsprengsel erinnern an die Außenhaut der Körner…

PDF: Miniexplosionen in der Küche

Manuskript der Einreichversion beim Autor erhältlich (schlichting@uni-muenster.de)

Ein trockenes Loch im Tröpfchenbelag

H. Joachim Schlichting. Physik in unserer Zeit 51/6 (2020), S. 308

Ein vor einer kalten Fensterscheibe befindliches Hindernis ermöglicht eine Visualisierung der Strömung wärmerer Luft. Weiterlesen

Ein Sternenhimmel in der Badewanne

H. Joachim Schlichting. Physik in unserer Zeit 51/5 (2020), S. 254

Auf einer Wasseroberfläche driftende Blasen rufen im Sonnenlicht sternförmige Kaustiken auf dem Grund des Behälters hervor. Ursache ist die Brechung und Fokussierung des Lichts am äußeren und inneren Meniskus der Blase.

Wenn im Sommer wassergefüllte Behälter, z.B. eine Badewanne in der Sonne stehen, wird der aufmerksame Beobachter vielleicht von sternartigen Lichtflecken auf dem Boden des Behälters überrascht sein. (siehe Abbildung). Voraussetzung dafür, dass diese vierzackigen Sterne erscheinen sind auf der Wasseroberfläche driftende Blasen, die fast immer vorhanden sind, wenn die Wanne den sommerlichen Spielen mit Wasser dient. Jede Blase projiziert einen solchen Stern auf den Boden.
Bei den Sternen handelt es sich um Kaustiken (Brennlinien), die durch das von der Blase deformierte Wasser hervorgerufen werden. Dieses Phänomen war schon Leonardo da Vinci (1452 – 1519) bekannt, der es folgendermaßen umschreibt, ohne es jedoch zu erklären. „Der durch die Blase an der Oberfläche des Wassers gehende Strahl wirft auf den Grund des Wassers ein kreuzförmiges Bild von dieser Blase“.
Das Phänomen kommt dadurch zustande, dass sich an der Innen- und Außenseite der Blase ein Wassermeniskus ausbildet. Ähnlich wie das Wasser in einem Trinkglas wegen der Benetzbarkeit des Glases ein Stück weit an der Gefäßwand aufsteigt, passiert dies erst recht bei einer im Wesentlichen aus Wasser bestehenden Blase – und, das diese auf der Wasseroberfläche driftet, sogar innen und außen. Da in der Blase ein gewisser Überdruck gegenüber dem äußeren Luftdruck herrscht, wird die Wasseroberfläche innerhalb der Blase auch noch ein wenig eingedellt, wodurch dieser Effekt noch verstärkt wird.
An diesem Meniskus wird das Licht wie an einem halbkreisförmig gebogenen Prisma gebrochen und auf den Boden der Wanne fokussiert. Komplementär passiert etwas Entsprechendes an der äußeren Blasenwand, allerdings mit umgekehrter Krümmung. Beide Kaustiken überlagernd sich auf dem Boden des Gefäßes zu dieser auffälligen Sternkaustik.

Eingereichtes Manuskript

Physik des Karussellkreisels – Doppeltes Drehspiel

Christian Ucke, Hans Joachim Schlichting. Physik in unser Zeit 51/3 (2020). S. 138-140

Kreisel müssen nicht unbedingt mit der Spitze auf einer festen Unterlage rotieren. Im hier vorgestellten Spielzeug bringen zwei hängende Kreisel durch eine raffinierte Reibungskopplung eine drehbar gelagerte Stange in Rotation, indem diese Drehimpuls von den Kreiseln übernimmt.

Der in der Abbildung 1  gezeigte Karussellkreisel besteht aus einem Ständer mit einer konkaven Einbuchtung oben, einer Haltestange sowie zwei daran angehängten Kreiseln. Die klassischen, per Hand anzudrehenden Holzkreisel enthalten in der Achse einen dünnen, zylindrischen Magneten, dessen ebene Stirnfläche mit dem Kreiselstiel oben abschließt. Die Haltestange hat mittig einen kurzen Stift mit einer kleinen Stahlkugel von ungefähr 2 mm Durchmesser am Ende, der in der konkaven Einbuchtung frei drehbar lagert. Weiterlesen

Reflexionen in und über eine gewöhnliche Wasserpfütze

H. Joachim Schlichting. Physik in unserer Zeit 51/3 (2020), S. 149

Was man beim Blick in eine Wasserpfütze zu sehen bekommt, hängt vor allem davon ab, aus welcher Richtung man in die Pfütze schaut.

Wasserflächen von weitem gesehen, nehmen teilweise die Farbe des Himmels an, weil diese in ihnen spiegelnd reflektiert wird. Ein (flacher) See erscheint deshalb blau, weil der Himmel blau ist. Und wenn der Himmel bedeckt und grau ist, kann der See nicht anders, als es ihm gleichzutun.
Auch die abgebildete Wasserpfütze (Abbildung 1) gibt das Blau des Himmels und das Weiß der Wolken wieder. Nähert man sich jedoch der Pfütze, so verblasst die Farbe zunehmend. Steht man direkt davor (Abbildung 2), so wird die Pfütze unversehens nahezu transparent. Man sieht den darunter und im Randbereich befeuchteten Asphalt teilweise in noch kräftigeren Farben als ohne die Wasserschicht darüber.
Die Ursache für diesen Wechsel ist darin zu sehen, dass der Anteil des reflektierten Lichts umso größer ist, je flacher man auf die Wasseroberfläche blickt (Einfalls- und Reflexionswinkel bezogen auf das Lot zur Wasseroberfläche sind groß) und minimal wird, wenn man senkrecht hineinschaut (Einfalls- und Reflexionswinkel sind Null) (mittleres Foto). Zwar ist von den Wolken noch etwas zu erkennen, aber wegen des geringen Kontrasts zwischen Himmelslicht und feuchtem Asphalt sieht man von den Blauanteilen nichts mehr.
Dieses optische Verhalten beobachtet man nicht nur bei Wasserflächen, sondern auch bei anderen transparenten Medien wie etwa bei Fensterscheiben. Wenn das Licht senkrech einfällt, reflektiert die Grenzfläche zwischen Glas und Luft nur etwa 4%. Dieses hier nur qualitativ angesprochene Phänomen wird quantitativ durch die sogenannten Fresnelschen Gleichungen beschrieben.
Das untere Foto wurde ebenfalls aus größerer Entfernung aufgenommen, allerdings aus umgekehrter Richtung gegen die Sonne. Auch hier sieht man das Himmelsblau und einige Wolken reflektiert. Einen auffälligen Unterschied zeigt der Randbereich, in dem die raue Oberfläche der befeuchteten Splitteilchen ihr dunkles Aussehen (oberes Bild) in ein blendend helles Leuchten gewechselt hat. Da hier dieselbe Pfütze nahezu gegen die Sonne fotografiert wurde, reflektieren die befeuchteten Flächen der Splittteilchen das Sonnenlicht auch noch aus Winkeln in die Kamera, die vom Reflexionswinkel der horizontalen Wasseroberfläche geringfügig abweichen. Es besteht somit eine enge Beziehung zum Phänomen des Schwerts der Sonne [1], bei dem das Sonnenlicht nicht nur an einer Stelle, sondern aus einem mehr oder weniger breiten Nachbarbereich gesehen wird. Beim Foto in Abbildung 1 wurde hingegen mit der Sonne im Rücken fotografiert; die Splittteilchen reflektierten das Sonnenlicht daher hauptsächlich vom Fotografen weg. Hinzu kommt dass dort die diffuse Reflexion im feuchten Randbereich geringer ausfällt als in der trockenen Nachbarschaft, weil das einfallende Licht in der dünnen Wasserschicht einige Male hin-und her reflektiert und dabei stärker absorbiert wird als im trockenen Bereich. Dieses Phänomen kennt man von den kräftigen Farben und dem Glanz feuchter Steine (Physik in unserer Zeit 36/1, 47 (2005)).
An der unterschiedlichen Helligkeit des Grases ist ebenfalls zu erkennen, dass man im einen Fall auf die beleuchtete Seite und im anderen Fall auf die Schattenseite der Gräser blickt.

Literatur

[1] H. J. Schlichting, Der mathematische und naturwissenschaftliche Unterricht 1998, 51 (7), 387; 1999, 52 (6), 330.

Dies ist die Einreichversion der Publikation.

PDF: Reflexionen in und über eine gewöhnliche Wasserpfütze.

Der pulsierende Flüssigkeitsstrahl

H. Joachim Schlichting. Physik in  unserer Zeit 50/5 (2019), S. 251

Beim Bestreben eines horizontal aus einer Öffnung austretenden flachen Flüssigkeitsstrahls Zylinderform anzunehmen, schießt er aus Trägheit über das Ziel hinaus.

Weiterlesen

Am Ende des Regenbogens zweiter Ordnung

H. Joachim Schlichting. Physik in unserer Zeit 50/4 (2019), S. 200

Bei aufmerksamer Betrachtung eines Springbrunnens lassen sich in den Tropfen Fragmente eines Regenbogens erkennen, auch wenn die Sonne schon relativ hoch steht.

Am Ende des Regenbogens soll bekanntlich ein Schatz zu finden sein. Ist er auch, aber anders als man denkt. Wenn man an einem sonnigen Tag mit der noch tiefstehenden Sonne im Rücken einen Springbrunnen betrachtet, bekommt man im Gischt der Fontäne zumindest Fragmente eines Regenbogens zu sehen. Mit aufsteigender Sonne sinkt der Bogen und „ersäuft“ meist im Wasser an der Wurzel der Fontäne. Weiterlesen

Rätselhafte Punktmuster eines gespiegelten Laserstrahls

H. Joachim Schlichting. Physik in unserer Zeit 50/3 (2019) S. 149

Strahlt man mit einem Laserpointer flach auf einen Spiegel, sodass das Spiegelbild auf einer senkrecht dazu aufgestellten Projektionswand erscheint, tritt eine ganze Serie von Reflexen auf, die sich einem nicht sofort erschließen.

Mit einem Laserpointer soll man eigentlich nicht spielen, jedenfalls nicht, wenn andere Personen in der Nähe sind. Dennoch ist der Reiz, auf diese Weise neuen Phänomenen auf die Spur zu kommen, sehr groß. Das früher beschriebene Phänomen, bei dem mit einem Laserpointer in eine fast leere Teetasse gestrahlt wurde, gehört ebenso dazu (Physik in unserer Zeit 2013, 44(2), 98) wie das Licht beugende Geodreieck (Physik in unserer Zeit 2012, 43(4), 198). Weiterlesen

Zur Physik des Schuheschnürens -Kombinatorik und Physik von Knoten und Schleifen

H. Joachim Schlichting. Physik in unserer Zeit 2 (2019), S. 78 – 81

Beim Schnüren von Schuhen kommt es zu einem physikalisch interessanten Zusammenspiel eines Flaschenzugs als Zugkraftverstärker und topologisch optimierten Reibungskräften, durch welche die jeweilige Schnürung mit wenigen Handgriffen durch Knoten fixiert und auch wieder geöffnet werden kann. Allerdings führt auch das Gehen selbst zum Öffnen der Knoten.

Knoten spielen in verschiedenen Bereich der aktuellen Physik eine zunehmend wichtige Rolle. Dabei wird oft auf Anschauungen zurückgegriffen, die im makroskopischen Bereich gewonnen werden, etwa beim Schnüren der Schuhe. Die dabei erlernten und rein intuitiv angewandten Techniken sind selbst ein interessanter Gegenstand der Physik und lohnen etwas genauer betrachtet zu werden. Sowohl dem Schnüren der Schuhe, dem Binden der Schleifen und dem notorischen Versagen der Schleife beim Laufen liegt ein subtiles Zusammenspiel zwischen topologischen, dynamischen und materialtechnischen Aspekten zugrunde… (bei Interesse vollständigen Text beim Autor anfordern).

PDF: Zur Physik des Schuheschnürens

 

Die Schuhe

Man sieht sehr häufig unrecht tun,
doch selten öfter als den Schuhn.
Man weiß, daß sie nach ewgen Normen
die Form der Füße treu umformen.
Die Sohlen scheinen auszuschweifen,
bis sie am Ballen sich begreifen.
Ein jeder merkt: es ist ein Paar.
Nur Mägden wird dies niemals klar.
Sie setzen Stiefel (wo auch immer)
einander abgekehrt vors Zimmer.
Was müssen solche Schuhe leiden!
Sie sind so fleißig, so bescheiden;
sie wollen nichts auf dieser Welt,
als daß man sie zusammen stellt,
nicht auseinanderstrebend wie
das unvernünftig blöde Vieh!
O Ihr Marie, Sophie, Therese –
der Satan wird euch einst, der böse
die Stiefel anziehn, wenn es heißt,
hinweg zu gehn als seliger Geist!
Dann werdet ihr voll Wehgeheule
das Schicksal teilen jener Eule,
die, als zwei Hasen nach sie flog,
und plötzlich jeder seitwärts bog,
der eine links, der andre rechts,
zerriß (im Eifer des Gefechts)!
Wie Puppen, mitten durchgesägte,
so werdet ihr alsdann, ihr Mägde,
bei Engeln halb und halb bei Teufeln
von niegestillten Tränen träufeln,
der Hölle ein willkommner Spott
und peinlich selbst dem lieben Gott. Weiterlesen

Musterbildung im Schnee

Schlichting, H. Joachim. Physik in unserer Zeit 50/1 (2019), S. 45

Das Zusammenwirken von Absorption und Reflexion von Sonnenlicht sowie Wärmeleitung führt unter bestimmten Bedingungen zu regelmäßigen Mustern im Schnee.

Auf dem Handlauf eines Treppengeländers hat sich ein Muster aus periodisch weggeschmolzenem Schnee gebildet. Das ist auch insofern erstaunlich, als die Lufttemperatur mit -1 bis -2 °C eindeutig zu niedrig ist, um den Schnee zum Schmelzen zu bringen. Zwar bricht die Sonne hin und wieder durch den hochnebelartigen Dunst und fühlt sich angenehm warm an. Doch der blendend weiß erstrahlende Schnee ist ein deutliches Zeichen dafür, dass das Sonnenlicht nicht gleichermaßen vom Schnee absorbiert, sondern hauptsächlich reflektiert wird. Weiterlesen

Virtuelle Multiplikation von Kugeln

Weiterlesen

Schlaffer Faden – straffer Loop

Schlichting, H. Joachim; Suhr, Wilfried. Physik in unserer Zeit 4 (2018) 196-199

Ein zu einer Endlosschleife geschlossener Faden lässt sich in einer Pfeife durch Pusten in einen stabilen Rotationszustand versetzen. Der Luftwiderstand des Fadens erweist sich als wesentlich für den Antrieb und die Stabilisierung des Spielzeugs.

Die Seilschleuder hat durch die zunehmende Verbreitung von Science Centern in den letzten Jahren eine gewisse Bekanntheit erlangt. Sie beeindruckt vor allem dadurch, dass ein zu einer Schlaufe verknüpftes Seil in eine stationäre Rotationsbewegung gebracht werden kann, wobei das Seil durch innere Zugkräfte versteift und stabilisiert wird (Physik in unserer Zeit 2018, 49 (2), 80). Weiterlesen

Die Temperatur an die Kette gelegt

Ucke, Chr.; Schlichting, H. Joachim. Physik in unserer Zeit 4)/3 (2018) S. 138 – 141

Das wenig verbreitete Kettenthermometer hat eine unübliche Anzeige: niedrige Temperaturen sind oben auf einer Skala abzulesen, hohe Temperaturen unten. Das erklärt sich aus der Konstruktion. Es lässt sich mit passablem Aufwand selbst bauen.

Die im thüringischen Ort Mellenbach-Glasbach ansässige Firma Möller-Sommer-Therm [1] hat etwa um 1990 das sogenannte Kettenthermometer entwickelt und mit zwei Schriften beim Deutschen Patentamt angemeldet [2, 3]. Das Thermometer wurde auch bis etwa 2004 produziert, war allerdings nie sehr verbreitet. Es ist heute relativ unbekannt und kaum noch erhältlich [4]. Es ist eher ein dekoratives Element als ein genaues Messinstrument. Die Messskala ist gerade umgekehrt wie sonst üblich: die großen Temperaturwerte befinden sich unten, die kleinen oben. Daher verleitet eine solche Skala leicht zu Fehlablesungen, da wir gewohnt sind, zunehmende Werte auf senkrecht angeordneten Skalen oben zu finden. Weiterlesen

Fontänen und Loopings am laufenden Band

Suhr, Wilfried; Schlichting, H. Joachim.  Physik in unserer Zeit 49/2 (2018) S. 80 – 85

Modellierung einer Seilschleuder

Versetzt man ein geschlossenes Seil in Rotation, so richtet es sich zu einer fontänenartigen Bewegungsfigur auf. Mit zunehmender Umlaufgeschwindigkeit geht diese durch einen phasenübergangsähnlichen Wechsel in einen geschlossenen Loop über. Dabei übernimmt die Dissipation der Bewegungsenergie eine konstruktive Rolle. Weiterlesen

Ein irritierend rotierender Globus

Ucke, Christian; Schlichting, H. Joachim. Physik in unserer Zeit 42/5 (2017), S. 246 – 250

Ein auf einem feststehenden Dreibein befindlicher Globus dreht sich lautlos und scheinbar ohne äußere Energiezufuhr. Dahinter steckt eine ingeniöse Kombination von Hightech- Materialien und Geräten mit bekannten mechanischen und optischen Effekten, die sich erst nach und nach erschließt. Weiterlesen

Spielereien mit kleinen Stabmagneten

H. Joachim Schlichting. In: Physik in unserer Zeit 3 (2017), S. 150 – 151

Zwingt man Stabmagnete, sich mit gleichnamigen Polen gegenüberzustehen, so kommt es zu paradox anmutenden Phänomenen. Ihnen liegt ein subtiles Zusammenwirken von magnetischer Anziehung und Abstoßung sowie mechanischen Drehmomenten und der Reibung zugrunde. Weiterlesen

Die einfachste Eisenbahn der Welt

EisenbahnSchlichting, H. Joachim; Schlichting, Jan. Physik in unserer Zeit 47/3, S. 130 -33

Eine einfache Batterie, je mit einem Zylindermagneten an den Polen versehen, saust durch eine Spule wie eine Eisenbahn durch einen Tunnel. Die Magnete leiten den Strom durch die Spule und wechselwirken mit dem dadurch hervorgerufenen elektromagnetischen Feld.

Video auf YouTube

Das unermüdliche Maxwell-Rad

Maxwell RadUcke, Christian; Schlichting, H. Joachim. Physik in unserer Zeit 46/1 (2015) 40 – 43

Sisyphus musste bekanntlich einen Stein mühsam bergauf bewegen, der dann immer wieder hinunter rollte. Das bekannte Maxwellsche Rad bereitet vielen Physikstudenten in intellektueller Hinsicht ähnliche Mühe. Es gibt jedoch kreative und unterhaltsame Variationen dieses Klassikers.

(ein Video Maxwellrad sowie ein weiterführender Text zur quantitativen Analyse finden sich auf http://www.phiuz.de Special Features/Zusatzmaterial zu den Heften).

PDF kann beim Autor angefordert werden (schlichting@uni-muenster.de)

Der weiße Streifen im Regenbogen

Roter RegenbogenSchlichting, H. Joachim. Physik in unserer Zeit 45/6 (2014) 308

Regenbögen weisen bei Sonnenuntergang manchmal einen weißen Streifen auf. Additive Farbmischung ist hier im Spiel.

Der Mangel an Farben und die dadurch  für den Einen oder Anderen eingeschränkte Ästhetik des abendlichen Regenbogens wird für die eher an dem physikalischen Hingergrund interessierten LeserInnen vielleicht durch die weitgehenden Schlüsse, die aus dem weißen Streifen gezogen werden können, ausgeglichen.

Streng geheim – Der ewige Kreisel

Ewiger KreiselUcke, Christian; Schlichting, H. Joachim. Physik in unserer Zeit 45/6 (2014) 284 – 287

Es wäre schön, wenn ein einmal angedrehter Kreisel nie mehr aufhören würde sich zu drehen. Solche „ewigen Kreisel“ gibt es tatsächlich. Sie verfügen über eine externe Energiezufuhr oder eingebaute Energiequelle, die eine Laufzeit von mehreren Stunden oder Tagen erlaubt. Ewig laufen sie natürlich nicht.

PDF: Streng geheim – Der eweige Kreisel (Einreichversion)

Die rätselhafte Kettenfontäne

Kettenfontäne-1bSchlichting, H. Joachim; Ucke, Christian. In: Physik in unserer Zeit 45/5 (2014) 234 – 237Kettenfontäne-1a

Eine aus einem Becher heraus gleitende Kugelkette rutscht nicht einfach über den Rand, sondern steigt wie eine Fontäne steil nach oben auf, bevor sie zu Boden fällt. Ein überraschendes Verhalten, das den Gesetzen der Schwerkraft zu widersprechen scheint.

Die Fontäne im Video

Eine quantitative Modellierung findet man hier.

PDF: Kann beim Autor angefordert werden (schlichting@uni-muenster.de)

Unendliche Spiegelfechtereien

Unendliche SpiegelfechtereienUcke, Christian; Schlichting, H. Joachim. In: Physik in unserer Zeit 45/4 (2014), S. 181-185

Mit Spiegeln lassen sich überraschende Effekte erzielen. Zwei einander gegenüberstehende Spiegel erzeugen Vielfachreflexionen mit enormer Tiefenwirkung. Begehbare Spiegeldreiecke und Spiegellabyrinthe irritieren die Wahrnehmung mit unendlich vielen Reflexionen.

PDF: Unendlichkeitsspiegel

Höllenlärm am Autofenster

AutofensterSchlichting, H. Joachim. In: Physik in unserer Zeit 45/3 (2014), S. 151-52

Ein geöffnetes Fenster kann ein fahrendes Auto zu einem Helmholtz-Resonator mit unangenehmen Tönen machen. Mit einer einfachen Rechnung lässt sich die Frequenz des Tones abschätzen.

Hilfe, mein Auto scheidet Schnee aus!

Auspuff_Raureifstruktur_rvSchlichting, H. Joachim. In: Physik in unserer Zeit 44/6 (2013), S. 272-273

An kalten Wintertagen kann der Wasserdampf in den Abgasen eines Autos schneeweiße Raureifbeläge auf dem kalten Pflaster hervorrufen.

PDF: kann beim Autor angefordert werden (schlichting@uni-muenster.de)

Paradoxe Schatten

paradoxe SchattenUcke, Christian; Schlichting, H. Joachim. In: Physik in unserer Zeit 44/6 (2013), S. 272-273

Das Licht der Sonne erzeugt von einem in Wasser schwimmenden Ball unter gewissen Bedingungen mehrere Schatten. Dieser scheinbar paradoxe Effekt lässt sich ganz klassisch mit dem Brechungsgesetz erklären.
Lebte man auf einem Planeten, der um ein Doppelsternsystem kreist, würde man sich nicht wundern, wenn man hinter einem Gegenstand zwei Schatten sieht. Es gibt tatsächlich derartige, in Wirklichkeit ziemlich unwirtliche Planeten, beispielsweise Kepler-16b und Kepler-34b. In der Science-Fiction-Saga Star Wars mit Luke Skywalker wurde ein entsprechender, allerdings lebensfreundlicher Planet namens Tatooine vorweggenommen. Sieht man jedoch auf der Erde in einem flachen Kinderswimmingpool bei einem schwimmenden, steil von einer Sonne beleuchteten Ball sogar drei Schatten, so erzeugt das Irritationen und Neugierde zugleich.

PDF: Paradoxe Schatten(Einreichversion)

Manchmal hilft nur Trägheit

Clip_144Schlichting, H. Joachim, Ucke, Christian: In: Physik in unerer Zeit 44/5 (2013), S. 240-242

Was auf den ersten Blick wie ein simples Geduldsspiel erscheint, ist in Wirklichkeit ein raffiniertes physikalisches Spielzeug: die Kugelwippe. Was mit Geduld nur sehr schwer zu erreichen ist, gelingt mit einem physikalischen Trick.

PDF: Kann beim Autor angefordert werden.

Der Scheinriese im Säulengang

Schlichting, H. Joachim. In : Physik in unClip_142serer Zeit 44/4 (2013) 190

Ein Säulengang, der kürzer ist, als er erscheint, lässt Menschen scheinbar wachsen, wenn sie durch ihn hindurchgehen. Die geschickte optische Täuschung eines Architekten aus dem 17. Jahrhundert befindet sich in einem alten Palast in Rom.

PDF: Kann beim Autor angefordert werden (schlichting@uni-muenster.de)

Photoarchiv