//
Artikel Archiv

Abbildung

Diese Schlagwort ist 112 Beiträgen zugeordnet

Sonnentaler im Park

Als ich diese lange Allee in einem Park entlang spazierte und im Blätterbaldachin der Laubbäume die winzigen Löcher sah durch die die Sonne hindurch stieß, kam mir der alberne Gedanke, dass Lichttropfen auf den Boden fielen und in runden Flecken auseinanderliefen.
Später las ich ein Buch von Guy Helminger, in dem ich folgenden Satz fand:

Das Licht fiel in kleinen Tropfen zwischen den Blättern hindurch und musterte den Park.*

War der Gedanke also doch nicht so albern?

Physikalisch gesehen handelt es sich um die in diesem Blog schon mehrfach angesprochenen Sonnentaler. Die winzigen Öffnungen im Blätterdach der Bäume wirken wie Lochkameras und bilden die Sonne auf dem weitgehend im Schatten liegenden Boden ab.


* Guy Helminger. Etwas fehlt immer. Erzählungen. Frankfurt 2007. S. 225

Unfreiwilliges Schattenspiel

Zwei Personen unterhalten sich hinter einem zum Trocknen aufgehängten Bettlaken. Jedenfalls lassen sich zumindest die Gestik der auf das Laken projizierten Schatten der beiden so deuten. Da die Sprachfähigkeit eines der beiden interagierenden Personen noch nicht voll ausgebildet ist, kommt der ausgeprägten Gestik eine besondere Bedeutung zu. Ich wurde zum unfreiwilligen Zuschauer dieses Schattenspiels, konnte aber wegen des Abstands die vermutlich ohnehin restringierte Unterhaltung kaum wahrnehmen, wurde aber durch die projizierte Gestik voll in den Bann dieses etwa 5 Minuten währenden Akts gezogen. Aber auch die Protagonistinnen wissen wegen der optischen Trennung durch das Laken von meiner Anwesenheit nichts und fühlen sich daher ungestört und ganz der Sache zugewandt.
Vielleicht ist ja das aus China bekannte Schattentheater aus einem ähnlichen Anlass entstanden.
Es findet hier unter freiem Himmel statt. die Sonne fungiert als Lichtquelle, das Bettlaken als Leinwand. Da die Sonne wegen der unvorstellbar weiten Entfernung fast paralleles Licht aussendet, ist die Abbildung auf der Leinwand fast perfekt.

Multiphänomenal

Ein Blatt, das im stürmischen Regenschauer vom Baum heruntergerissen kommt rücklings auf dem Boden zu liegen. Einige versprengte Wassertropfen sind in muldenförmigen Vertiefungen des Blatts zur Ruhe gekommen, malerisch inszeniert durch die inzwischen wieder dominierende Sonne. Das zeigt sich nicht nur in den Schattierungen des Blattes, sondern auch in den hellen Lichtflecken. Diese kommen dadurch zustande, dass die Wassertropfen wie Sammellinsen wirken und das Licht auf einen Lichtfleck fokussieren. Dieser ist im Vergleich zur Umgebung so hell, dass die grüne Farbe des Blattes überstrahlt wird (Irradiation bzw. Blooming). Außerdem wirkt die Tropfenlinse als Lupe und zeigt die Struktur des Blattes in leicht vergrößerter Form.
Dass der aufprallende Regen sich in Tropfen sammelt ist der Minimierung der Grenzflächenenergie zwischen Wasser, Blatt und Luft zu verdanken. Um die Grenzflächenenergie zu minimieren strebt das Wasser die Form an, die unter den gegebenen Bedingungen die kleinste Grenzfläche hat – das ist die Kugel. Sie wird allerdings näherungsweise nur von den kleinen Tropfen erreicht, weil einerseits der Einfluss der Schwerkraft umso geringer ist, je kleiner die Masse der Tropfen ist und andererseits für die Ausbildung einer Grenzfläche mit dem Blatt verhältnismäßig viel Energie nötig ist. Man sagt auch, das Blatt sei hydrophob. Die Hydrophobie wird hauptsächlich durch winzige Härchen auf den Blättern hervorgerufen, auf denen die Tropfen gewissermaßen ruhen und daher nur winzige Berührflächen mit dem Blatt haben.
Trotzdem oder vielleicht gerade deshalb ein naturschöner Anblick.

Hexagonale Sonnentaler

Ich bin ein Sonnentalersammler. Wobei das Sammeln sich meist auf die Betrachtung beschränkt und letztlich ich es bin, der sich sammelt. Nur manchmal zücke ich noch die Kamera. So auch in diesem Fall, obwohl sich vielleicht nicht sofort erschließt, was es hier Besonderes zu sehen gibt. Im Hintergrund sind einige Sonnentaler schön rund, im Vordergrund zerflettern sie weitgehend, weil die verursachenden „Löcher“ in den Ausläufern der Zweige zu groß werden.
Allerdings zeigt sich hier, wo die Löcher dicht an dicht auftreten und sich gewissermaßen bedrängen, so etwas wie eine dichteste Lochpackung in Form von hexagonalen Zellen zu sehen ist (siehe Ausschnitt im unteren Bild). Das ist ganz ähnlich wie bei den Waben der Bienen, die von diesen zunächst als zylinderförmig, also mit kreisrunder Öffnung geschaffen werden und sich wegen der Weichheit des Wachses von den Nachbarzellen gedrückt zu hexagonalen Mustern gruppieren.

Rätselfoto des Monats Juni 2022

Wie kommt es zu der doppelten Abbildung?

Erklärung des Rätselfotos des Monats Mai 2021

Frage: Wie kommt es zu der Miniaturabbildung
Antwort: Bei einer Teepause, in der ich ein Stück Kandis in den Tee fallen ließ, entstand eine Blase und ermöglichte es mir durch sie hindurch auf das Stück Kandis zu linsen. Dieses erschien nämlich deutlich verkleinert, so als ob man durch eine Zerstreuungslinse blickte. Wie kann das sein?
Da der Blase ohnehin nur eine kurze Lebensdauer beschieden war und die geselligen Umstände es unmöglich machten, der Sache vor Ort auf den Grund zu gehen, rekonstruierte ich die Situation später in einer Tasse mit Wasser, in das ich zur Entspannung einem Tropfen Spülmittel gegeben hatte. Zur Erzeugung der Blase nahm einen Strohhalm zu Hilfe, mit dem ich auch noch die Blasengröße bestimmen konnte. Und anstelle des Kandis, legte ich eine Cent- Münze auf den Grund der Tasse.
Mit einer solchen Anordnung lässt sich schön verfolgen, dass die Münze wie ehemals der Kandis durch die Blase hindurch betrachtet tatsächlich verkleinert erscheint und zwar umso mehr je kleiner die Blase ist.
Zur Erklärung muss man sich zunächst klarmachen, dass es sich bei der Blase um eine Halbblase handelt und selbst das stimmt nur ungefähr. Damit eine Blase überhaupt als solche existieren kann, muss der Innendruck größer sein als der Außendruck. Denn die Tendenz der Seifenhaut, sich zu einem kugelförmigen Tropfen zusammenzuziehen muss durch einen höheren Innendruck kompensiert werden. Dadurch wird nicht nur die Seifenhaut straff gehalten, sondern im Falle der auf dem Wasser driftenden Halbblase auch die Wasseroberfläche ein wenig eingedellt, sodass im Wasser so etwas wie eine konkave Linse entsteht.
Blickt man durch eine solche Zerstreuungslinse, so erscheinen die durch sie betrachteten Gegenstände – also hier die 1-Cent-Münze – verkleinert: Je kleiner die Blase und damit die Brennweite der von ihr geformten Linse, desto kleiner ist die Abbildung.
In der Abbildung ist die Blase wegen ihrer Transparenz nur indirekt zu erkennen, nämlich durch die tassenfarbene Spiegelung auf dem konkaven Rand der Blase und durch Interferenzfarben im Bereich des Spiegelbilds des lichtspendenden Fensters.

Der Spiegel spiegelt…

… will sagen: Er gibt nur dann annähernd die Wirklichkeit wieder, wenn bestimmte Bedingungen erfüllt sind. Merkwürdigerweise sind es teilweise gerade solche, die in der abgebildeten Realität meist nicht realisiert sind. Zum Beispiel muss der Spiegel eben sein, darf keine Krümmungen aufweisen, muss gut reflektieren…
Genau das ist in dem Foto nicht gut erfüllt und führt zu einer ganz anderen Geschichte. Wir sehen lang aufstrebende kurvige, sich an bestimmten Stellen verzweigende, teilweise wellige Gebilde. Es handelt sich um eine mit spiegelndem Aluminiumblech verkleidete Wand. Wäre sie eben, so würde sie ganz gut spiegeln, wie man an einigen Stellen sieht. Da sie aber unterschiedlich gekrümmt ist, vermag sie nur entsprechend verzerrte Bilder wiederzugeben. Vielleicht kann man an den blauen Teilen erkennen/erahnen, dass hier hängende, sacht im Wind wehende Fahnen zu sehen sind. Bei schwachen Krümmungen kommt es zu Wellenlinien und Schwankungen in der Dicke des Fahnenmasts. Bei den starken Krümmungen, weisen die Strukturen auf einen Punkt hin. Diese Singularitäten sind trichterartige Vertiefungen, die durch Schrauben hervorgebracht werden, mit denen die spiegelnden Platten an die Wand fixiert wurden. Sie sind entscheidend für die Stabilität der Aluminiumfassade und es ist, als würden die Strukturen dem Rechnung tragen, indem sich ihnen oft mehrfach zuwenden. Natürlich nur dort, wo es Gegenstände gibt, die in ihren Einflussbereich gelangen. Die Kräfte, die von den Schraubenfixpunkten ausgehen, sind zwar stark aber kurzreichweitig, was zu einer starken lokalen Krümmung des Blechs führt. Die Fahnenmasten sind natürlich nur eine Möglichkeit, die spiegelnden Aluminiumbleche zum „Reden“ zu bringen. Andere hier nicht im Bild auftretende Spiegelobjekte würden natürlich andere Geschichten erzählen…

Die Macht der Bilder

Wenn man die Augen aufmacht, entdeckt man, dass die natürliche und wissenschaftlich-technische Welt keine Gelegenheit auslässt, sich schöner Ansichten zu bemächtigen, indem diese einfach abgebildet bzw. kopiert werden. In der Natur tun das Seen und Pfützen, in der Stadt sind es eher Glasflächen und wie im Falle des Fotos so ungewöhnliche Orte wie der Kotflügel (sic!) eines Autos. Ich bin immer wieder erstaunt, wo überall Bilder der Umgebung anzutreffen sind.
Muss man sich da noch über die Macht der Bilder wundern und darüber in wie starkem Maße sie unser Denken und Handeln beeinflussen und machmal sogar bestimmen?

Übrigens: Weiß jemand, in welcher Stadt dieser Kotflügel gesehen wurde?

Riesensonnentaler in der Stadt

Sonnentaler bringt man normalerweise mit den Lichtkreisen unter dem Blätterdach von Bäumen in Verbindung. Wie erstaunt war ich doch, als ich perfekt aussehende Sonnentaler in der Stadt in einer bestimmten Anordnung über die Straße verstreut vorfand. Ich fragte mich natürlich, durch welche Löcher hier die Sonne wohl durchstrahlen würde und stieß schließlich auf hochgelegene Sprossenfenster mit kleinen quadratischen Scheiben (Schätzungsweise 15 cm x 15 cm). Diese reflektierten einen Teil des auftreffenden Sonnenlichts, was denselben Effekt hat, wie wenn das Licht durch quadratische Löcher geht: In der Nähe würde man quadratische Abbilder der kleinen Fenster auffangen, in weiterer Entfernung das Bild der Sonne.
Wer es nicht glaubt, dem empfehle ich folgendes kleines Expermiment. Man nehme einen quadratischen oder rechteckigen Taschenspiegel, lasse das Sonnenlicht darauf fallen und richte den Reflex auf eine möglichst weit entfernte schattige Fläche, z.B. die Wand eines hohen Hauses. Man wird einen runden Fleck wahrnehmen.
Dass die Reflex-Sonnentaler auf der Straße nicht so ordentlich aufgereiht erscheinen, wie die Fensterelemente liegt wohl daran, dass letztere nicht völlig plan eingebaut worden sind und die große Entfernung zu entsprechenden Verschiebungen der Abbilder auf dem Asphalt führt.

Metamorphose en miniature

Die Bäume trieften nur so vom letzten Regen. Doch das Geräusch der fallenden Tropfen, die sich aus den letzten feinen Wasserströmen speisten, ließ allmählich nach. Einige Tropfen blieben schließlich noch hängen. In der Nacht kühlte es sich auf etwas unter den Gefrierpunkt ab. Jedenfalls empfing mich der nächste Morgen mit reifüberzuckerten Pflanzen.
Erstaunlicherweise hingen einige Tropfen immer noch an den Zweigen. Aber sie waren gefroren, wie man an den Luftkanälen feststellen konnte, die die Tropfen durchzogen. Es sollte ein sonniger Tag werden und das geschah dann erstaunlicherweise auch. Ich behielt einige „Eistropfen“ im Auge. Weil sie am Ast festgefroren waren, fielen sie nicht herab. Vorerst. Denn die Sonne trat ihren nun schon etwas größer gewordenen Bogen mit ganzer Strahlkraft an. Das blieb nicht ohne Wirkung auf die „Eistropfen“. Es tat sich was.
Ich sah es zuerst daran, dass die inneren Luftkanäle schwanden. Die Luft löste sich in dem Maße im Wasser, wie es aus dem Eis hervorging. Schaut man genauer hin, so sieht man auf dem Foto, dass der Tropfen im oberen Bereich noch gefroren ist und Reste der Luftkanäle aufweist, während sich im unteren Bereich ein transparentes Säckchen mit flüssigem Wasser füllt und eine Trennlinie zwischen fest und flüssig sich allmählich nach oben bewegt.
Alles ging Hand in Hand bis der ursprüngliche Zustand vom Vortag wieder hergestellt war.
Eine meist übersehene völlig unwichtige Kleinigkeit. Sicher. Aber auch eine schöne Geschichte, die sich an den Bäumen vieltausendmal abspielt, ohne dass jemand Notiz davon nimmt. Ich mag diese Miniveranstaltungen im Verborgenen!

Der Vater der modernen Optik

H. Joachim Schlichting. Spektrum der Wissenschaft 12 (2021), S. 60 – 62

Die Sonnenflecke soll ich bemerkt und
die Sonne selbst soll ich übersehen haben!

Friedrich Hebbel (1813–1863)

Vor 450 Jahren, im Dezember 1571, wurde Johannes Kepler geboren. Den meisten ist er durch die nach ihm benannten Planetengesetze vertraut. Weniger bekannt ist: Er brachte die geometrische Optik praktisch zur Vollendung. Beide Leistungen hängen eng zusammen.

Die drei keplerschen Gesetze gelten zu Recht als revolutionär. Indem Johannes Kepler (1571–1630) für die Bewegungen der Planeten physikalische Ursachen annahm, deren Ursprung in der Sonne liegt, lieferte er entscheidende Argumente für das Weltbild von Nikolaus Kopernikus (1473–1543). Die Planetengesetze wiederum waren eine Voraussetzung für eine quantitative Naturbeschreibung, auf der Isaac Newton (1642–1726) die klassische Physik begründen konnte. Seitdem gibt es keinen Unterschied mehr zwischen himmlischen und irdischen Regeln.

Auf einem anderen Gebiet war Kepler ebenso weltbewegend tätig, nämlich der geometrischen Optik. Er brachte sie zu einem bis heute gültigen Abschluss (sieht man einmal von der späteren quantitativen Formulierung des Brechungsgesetzes ab). Beide Bereiche sind enger miteinander verknüpft, als man zunächst denken könnte.

Entscheidend war dabei die Lösung des so genannten Sonnentalerproblems, bei dem sich Astronomie und Optik treffen. Seit Mitte des 16. Jahrhunderts wurde als Beobachtungstechnik für Sonnenfinsternisse vorgeschlagen, den gefährlichen direkten Blick in die Sonne zu vermeiden, indem man ein Lochkamerabild auf einer Leinwand beobachtet. Denn schon lange vor Kepler war bekannt: Fällt Licht eines hellen Objekts durch eine wie auch immer geformte kleine Öffnung, entsteht hinter dieser eine Abbildung der Quelle. Das genaue Prinzip dahinter blieb aber rätselhaft. Bereits in der pseudo-aristotelischen Schrift Problemata Physica fragt sich der Autor zum einen: »Warum erzeugt die Sonne, wenn sie durch viereckige Gebilde dringt, nicht rechteckig gebildete Formen, sondern Kreise?« und zum anderen: »Warum treten bei Sonnenfinsternis, wenn man durch ein Sieb oder durch Blätterlücken sieht, oder wenn man die Finger der einen Hand mit denen der anderen verflechtet, die Sonnenstrahlen auf der Erde halbmondförmig in Erscheinung?«.

Letztlich geht es dabei um das Problem, wie sich die geradlinige Ausbreitung des Sonnenlichts mit dem Befund vereinbaren lässt, dass es sich selbst beim Durchgang etwa durch ein rechteckiges Loch zu einem kreisförmigen Fleck krümmt. Bemühungen um eine Lösung ziehen sich wie ein roter Faden durch die zweitausendjährige Geschichte der Strahlenoptik. Die Kepler vorliegenden Arbeiten des Mittelalters hinterlassen den Eindruck, Schuld seien die Unzulänglichkeit des Auges und die Art und Weise des Sehens. Der bereits neuzeitlich denkende Kepler erkannte in derartig »ungehörigen und in der Optik nicht anerkannten« Begründungen keine erhellenden Erklärungen. Er ging dem Sachverhalt selbst nach.

Doch warum war das für Kepler so wichtig? Hätte der Astronom die erfolgreiche Beobachtungsmethode von Sonnenfinsternissen nicht einfach akzeptieren können, ohne sie bis ins Detail verstehen zu müssen? Die Antwort darauf ergibt sich aus einem Rätsel, mit dem sich Keplers Zeitgenosse Tycho Brahe (1546–1601) konfrontiert sah. Ihm erschien bei der Sonnenfinsternis am 25. Februar 1598 der Neumond »nicht in der Größe, die er zu anderen Zeiten bei Vollmond hat«. Für Kepler, der zutiefst von der Gültigkeit der Himmelsmechanik überzeugt war und insbesondere die Bahnen und Größen der Himmelkörper für unveränderlich hielt, waren Ansätze völlig inakzeptabel, die zum Beispiel einen bei Sonnenfinsternissen schrumpfenden oder weiter entfernten Mond voraussetzten.

Kepler suchte stattdessen den Fehler bei der Beobachtungsstrategie selbst und entwickelte ein einfaches Modell, mit dem sich die Abbildung physikalisch rekonstruieren und anschaulich verstehen lässt. Auf der bewährten Grundlage des Strahlenmodells der geometrischen Optik nahm er an: Eine punktförmige Quelle sendet Strahlen radial in alle Richtungen aus. Fällt ihr Licht durch eine Öffnung, so erscheint diese in ihrer Form unverändert auf eine dahinter aufgestellte Leinwand projiziert – eine eckige Blende als ebenso kantige, helle Fläche. Doch die Sonne ist nicht punktförmig. Ein entscheidender Schritt brachte Kepler schnell auf die Lösung. Der Trick besteht darin, eine ausgedehnte Lichtquelle als Ensemble unendlich vieler Punktquellen aufzufassen.

Lässt man davon ausgehend in einem Gedankenexperiment beispielsweise eine dreieckige Lichtquelle durch ein rundes Loch strahlen, so liegt die Lösung des Sonnentalerproblems auf der Hand (siehe »Gemischter Umriss«). Anhand einiger ausgewählter Punkte wird erkennbar: Die auf der Leinwand abgebildeten runden Löcher überlagern sich letztlich zu der dreieckigen Form des leuchtenden Objekts.

Diese Modellierung dürfte zu Keplers Zeiten recht kühn gewirkt haben. Denn einerseits war das unendlich Kleine noch nicht vertraut – die später von Newton und Gottfried Wilhelm Leibniz (1646–1716) entwickelte Infinitesimalrechnung zeigte die damit verbundenen Vorstellungsschwierigkeiten. Andererseits wird eine ungestörte gegenseitige Durchdringung der Lichtstrahlen unterstellt, und das dürfte ebenso nicht selbstverständlich gewesen sein.

Die Lichtquelle zeigt ihren Umriss auf dem Schirm umso präziser, je kleiner das Loch ist. Dasselbe erreicht man mit zunehmendem Abstand zwischen Blende und Projektionswand, weil die Größe der Abbildung dabei schneller wächst als die von der Lochgröße bestimmte Randunschärfe.

So konnte Kepler die beobachtete Mondverkleinerung von 20 Prozent als einen Beobachtungsfehler erklären. Er beruhte darauf, dass der Schirm zu dicht hinter dem Loch angebracht oder dieses zu groß war. Zahllose Bilder des Lochs traten so weit über den Rand der eigentlichen Sonnenprojektion und überlagerten den Schatten des Monds (siehe »Randunschärfe«). Ein leicht verwaschener Eindruck kann nie vollständig beseitigt werden, doch nach dieser Einsicht wurde es möglich, den Effekt zu beziffern und durch kleinere Löcher und weitere Abstände zu minimieren.

Heute mag uns die Lösung des Problems einfach erscheinen, aber sie war damals alles andere als selbstverständlich. Kepler musste eine völlig neue Herangehensweise entwickeln und die optischen Regeln seiner Vorgänger entsprechend überarbeiten. Später kam zwar heraus, dass etwa Francesco Maurolico (1494–1575) bereits 1521 eine korrekte Erklärung gegeben hatte, allerdings konnte Kepler von ihr nichts wissen. Außerdem handelte es sich um eine relativ isolierte Beschreibung außerhalb eines einheitlichen theoretischen Rahmens.

Im Sinn des Physikers und Wissenschaftsphilosophen Thomas S. Kuhn (1922–1996) kann die von Kepler vollendete geometrische Optik als Ergebnis eines Paradigmenwechsels angesehen werden. Im Mittelpunkt dieser konzeptuellen Revolution stand das Phänomen der Sonnentaler. Als Astronom, der maßgeblich am Durchbruch der kopernikanischen Wende mitgewirkt hat, war Kepler bereits vom neuzeitlichen physikalischen Denken beeinflusst. Jedenfalls war er von den mechanischen Gesetzen der Bewegung der Himmelkörper derart überzeugt, dass er eine merkliche Größenveränderung von Himmelskörpern oder deren Bahnen angesichts des aus seiner Sicht mechanischen Ereignisses einer Sonnenfinsternis für unmöglich hielt. So konnte Kepler die Grenzen des bisher anerkannten Beobachtungsprinzips kritisch hinterfragen – und so verdanken wir ihm neben einer Revolution im Bereich der Astronomie außerdem die moderne Wissenschaft des Lichts.

Hochhäuser als Zylinderspiegel

Die beiden „Bettentürme“ des Universitätsklinikums in Münster sind zylinderförmig. Blickt man von dem einen zum anderen Turm, so stellt man fest, dass der eigene Turm im gegenüberliegenden wie durch eine konvexe Zylinderlinse abgebildet wird. Daraus kann man schon einmal schließen, dass die Scheiben gekrümmt sein müssen und nicht ein durch ebene Scheiben gebildetes Polygon darstellen, was bei einem so großen Umfang durchaus denkbar gewesen wäre.
Interessanterweise haben die einzelnen Scheiben eine stärkere Krümmung als der Turm als Ganzes. Das sieht man daran, dass jede Scheibe den ganzen gegenüberliegenden Turm abbildet. Man sieht das vollständige Bild des eigenen Turms nur in der direkt gegenüberliegenden Scheibe und nur die beiden angrenzenden Scheiben zeigen noch ein leicht seitlich verschobenes Bild eines Teils des Turms. Die übrigen Scheiben bilden aus dieser Position andere Teile der Umgebung ab.
An der kissenartigen Verzerrung der Abbildungen ist übrigens zu erkennen, die die äußeren Scheiben nicht perfekt zylinderförmig sind.
Ob mit der Krümmung der Scheiben neben ästhetischen auch praktische Aspekte beabsichtigt sind, ist mir nicht bekannt. Rein physikalisch gesehen wäre denkbar, dass konvexe (nach außen gekrümmte) Scheiben Windlasten besser kompensieren als flache Scheiben.

.

Regentropfen auf der Achterbahn

Es lohnt sich im leichten Nieselregen die Tropfenbildung auf Blättern und Trieben zu beobachten. Wasserliebende (hydrophile) Pflanzen halten die winzigen Tröpfchen zunächst durch die Adhäsionskraft fest. Da sich Wassertröpfchen selbst am meisten lieben, fließen benachbarte Tröpfchen zusammen und bilden größere Tropfen. Je größer/schwerer der Tropfen, desto mehr macht sich die Schwerkraft bemerkbar. Das führt dann dazu, dass die Tropfen sich schließlich in Bewegung setzen und sich in Richtung tiefster Stelle bewegen. Dort bleiben sie meist nicht lange, weil sie weiter wachsen, bis die Schwerkraft die Adhäsionskraft überwindet und die Tropfen zu Fall bringt. Vorher bilden sie aber die Umgebung ihrer Kleinheit entsprechend en miniature ab.

Virtuelle Herausforderung

Es ist wahrlich kein erbauendes Gefühl, sich selbst zwar verdoppelt aber kopflos gegenüberzustehen. Und da sage doch jemand, Spiegel seien verlässlich. Rein physikalisch gesehen sind sie es auch: Einfallswinkel = Reflexionswinkel und erst dadurch entsteht das Malheur. Ein gewellter, eingedellter Spiegel kann eben auch nur ein gewelltes und gedelltes Abbild hervorbringen. Dabei kann es je nach Blickwinkel neben abenteuerlichen Verzerrungen zu Überlagerungen und Verdeckungen, wobei oft entscheidende Partien einer Person dem Blick entzogen werden*.
Dennoch oder vielleicht auch deshalb sind solche meist in Science Centern mehr zur Belustigung als zur Aufklärung aufgestellten Zerrspiegel sehr beliebt. Das Vergnügen, sich in der Spiegelwelt je nach Position und Blickwinkel deformiert und depriviert, aber trotzdem nicht deprimiert zu sehen, resultiert vielleicht auch daraus, dass man im tiefsten Inneren die ebenso tiefe Überzeugung spürt, trotzdem in Wirklichkeit wirklich alles beieinander zu haben. Ich habe Kinder erlebt, die nach einigen Spielchen mit dem Zerrspiegel anschließend zum manchmal daneben angebrachten Planspiegel gegangen sind, vielleicht um sich ihrer körperlichen Integrität zu versichern. Man kann ja nie wissen.
Wenn Ödön von Horváth (1901 – 1938) in diesem Zusammenhang meint:
Mancher müßte in einen Zerrspiegel schauen,
um erträglich auszusehen,

so steckt angesichts des Fotos dahinter schon eine ganze Portion Bosheit.


* Wer kein Science-Center u. Ä. in der Nähe hat, kann sich mit den wandelnden Zerrspiegeln auf den Straßen und Parkplätzen vergnügen. Besonders die gut geputzten Karossen zeigen exzellente Verzerrungen.

Die Umgebung tropfenweise

Wassertropfen sind transparent. Trotzdem scheint es manchmal so zu sein, als würden sie sich ihre Umgebung jedenfalls teilweise formgerecht einverleiben. Sieht es nicht so aus, als würden die Grasstrukturen des Hintergrunds sehr viel schärfer im Innern der Tropfen auftreten? Es sieht so aus, aber bedeutet nur, dass Tropfen wie optische Linsen ihre Umwelt kopfstehend abbilden, jedenfalls wenn diese weiter als die Brennweite der Linse entfernt sind. Und das sind sie unter diesen Größenverhältnissen fast immer.
Abgesehen von dieser kleinen physikalischen Spielerei, fand ich dieses vom Morgentau geschaffene Szenario einfach naturschön.

Es verrieselt, es verraucht,
Mählich aus der Wolke taucht
Neu hervor der Sonnenadel.
In den feinen Dunst die Fichte
Ihre grünen Dornen streckt,
Wie ein schönes Weib die Nadel
In den Spitzenschleier steckt;
Und die Heide steht im Lichte
Zahllos blanker Tropfen, die
Am Wacholder zittern, wie
Glasgehänge an dem Lüster.*


 * Aus: Annette von Droste-Hülshoff. Die Vogelhütte. Sämtliche Gedichte. Frankfurt 1998, S. 44

Fenstergeschichten in Blautönen

Einige Fenster scheinen hier aus dem Rahmen zu fallen. Sie erzählen eine andere Geschichte.

Abbildung einer Linse aus Wasser

Wenn Wasser sich zum Beispiel an/auf dem Teil einer wasserliebenden Pflanze sammelt, bildet es einen Tropfen, um die Oberfläche so klein wie möglich zu machen. Der Tropfen wird von den meisten Blättern bis zu einer bestimmten Größe „gehalten“, weil die Grenzfläche mit dem Blatt weniger Energie erfordert als mit der Luft. Doch die Schwerkraft ist allenthalben wirksam. Je größer der Tropfen und damit seine Masse werden, desto stärker macht sich diese bemerkbar. Der Tropfen wird in die Länge gezogen bis die Schwerkraft größer ist als die Adhäsionskraft mit der Pflanze. Der Tropfen fällt.
Soweit zur Vorgeschichte dieses Fotos. Denn hier hat sich ein sehr großer Tropfen zwischen den Früchten (?) einer Pflanze gebildet. Weil der Tropfen gleich von mehreren Seiten gehalten wird, nimmt er eine eindrucksvolle Größe an.
Das wiederum qualifiziert den Tropfen zu einer entsprechend großen Sammellinse, durch die die Umgebung verkleinert und kopfstehend abgebildet wird. Die Verkleinerung hat den Vorteil, dass wir durch die Wasserlinse blickend einen größeren Bereich der dahinter befindlichen Pflanzenteile überblicken können.
Soweit zur Physik. Aufgefallen ist mir dieses Detail allerdings aus anderen Gründen. Es sah einfach schön aus – das Zusammenspiel der filigranen verkleinerten Strukturen mit den Strukturen normaler Größe.

Die Spiegelung bringt es an den Tag

Ein metallener Aschenbecher auf dem Tisch in einem Biergarten erscheint makellos verchromt. Das Gesicht der gegenüber sitzenden Person wird ziemlich perfekt gespiegelt. Nichts weist auf eine mögliche Strukturierung der Oberfläche hin. Aber wie so oft, bringt es die Sonne an den Tag. Wie man am Schatten (rechts oben) erkennt, fällt das Sonnenlicht von schräg links ein und streift einen Teil der vorderen Seite des Aschenbechers und wird dabei reflektiert. Die Reflexion ist gut zu erkennen, weil das Licht in einen Schattenbereich im Vordergrund des Bildes fällt. Ansonsten wäre das Phänomen kaum aufgefallen.
Man erkennt zahlreiche senkrechte Linien, die auf eine entsprechende Strukturierung schließen lassen. Sie deuten vermutlich auf den Herstellungsprozess hin. Vielleicht ist beim Biegen des verchromten Blechs der konvexe Bereich des Bechers so stark gedehnt worden, dass eine feine Rissstruktur senkrechter Riefen entstanden ist. Jedenfalls wird eine solche durch die Reflexion entlarvt. Das Phänomen, dass in der Reflexion etwas zu erkennen ist, was dem direkten Anblick verborgen bleibt, erinnert an den Chinesischen Zauberspiegel, bei dem ein eingeprägtes Muster auch erst Spiegelbild des Spiegels erkennbar wird.

Vom Quadrat zum Kreis

Die Quadratur des Kreises gehört zu den ungelösten geometrischen Problemen. Die Umkehrung, die darin besteht, aus einem Quadrat einen Kreis hervorgehen zu lassen. bringt die Natur mit Leichtigkeit zuwege. Dafür haben wir in dem Foto ein schönes Beispiel.
Über dieser farbenprächtigen Tür ist ein Holzgitter angebracht. Es soll dereinst ein Rankgewächst stützen, das sich gerade anschickt, an den Seiten hochzuwachsen. Vorerst muss man mit dem schräg auf die Tür fallenden Schatten des Gitters vorlieb nehmen. Je weiter die schattengebenden Löcher des Gitters von der Tür entfernt sind, desto stärker runden sich die Löcher der zugehörigen Schatten ab.
Man erkennt es daran, dass die Schatten im oberen Bereich der Tür noch ziemlich genau die rechteckige Struktur des Gitters wiedergeben, während die Schatten im unteren Bereich immer mehr von der quadratischen Form des Gitters abweichen. Wie kommt das?

Spiegelwirbel an einer Hausfassade

Als wir in intensiver Unterhaltung vor jener verspiegelten Fassade vorbeigingen (siehe Foto), in der ich gewissermaßen aus dem Augenwinkel die diesseitige Welt zwar unzugänglich und doch irritierend realistisch gedoubled im Schritttempo vorbeiziehen sehe, spürte ich plötzlich so etwas wie einen Sog. Die Unterhaltung war nicht mehr ernsthaft aufrechtzuerhalten. Wir blieben stehen und erkannten die Ursache für das merkwürdige Gefühl: Die Spiegelwand war mit einer Art Spiegelwirbeln belegt, die Teile des Abgebildeten um ominöse Mittelpunkte herum zu wickeln schienen. Als rational denkende Menschen glaubten wir natürlich nicht, den sagenhaften Aleph-Punkt gefunden zu haben, zumal es dann sehr viele davon gab. Und daher näherten wir uns der Fassade und stießen auf eine ganz profane Erklärung des Phänomens. Im Zentrum eines jeden Spiegelwirbels war der Kopf einer ordinären Schraube zu sehen, durch die ein riesiges spiegelndes blankes Blech fixiert wurde (siehe Foto). Durch die Spannung, mit der das Blech an den gewissen Stellen aus der Ebene heraus in eine vertiefte Position gezogen wurde, waren lokale Hohlspiegel geformt worden, die die Gegenstände entsprechend kreissymmetrisch verzerrt widergaben.

Partielle Sonnenfinsternis oder „Die angeknabberte Sonne“

Weiterlesen

Bildwelt und Bildwirkungen

Bilder und Geschichten können den Menschen helfen, jenseits aller Begrifflichkeit in der Dichte ihrer Befindlichkeiten und Gefühle eine Ordnung zu finden, die ihnen Orientierung und Halt im Leben geben kann.
Verbale Erklärungen sind dabei oft ungeeignet, weil Gefühlsmäßiges und Atmosphärisches kaum ohne entscheidende Gehaltseinbußen auf Begriffe gebracht oder in Worte gefasst werden können. Auch wenn Worte fehlen, muss es möglich sein, die Menschen jenseits aller Intellektualität anzusprechen und zu berühren.

Wer sich für das hier zur Illustration genutzte Phänomen physikalisch verstehen möchte, kann sich hier informieren.

Du sollst dir kein Bildnis machen

Was unterscheidet den auf dem Foto zu sehenden, auf einer nicht ganz ruhigen Wasseroberfläche spiegelnd reflektierten Menschen? Ihr sagt: Ich sehe nur die Reflexion des Menschen und das sei ein Unterschied zur direkten Ansicht. Doch wie ist es mit einem Objekt, das ich durch aufsteigende warme Luft hindurch sehe, wie es zuweilen bei einer aufgeheizten Straße oder bei einem Feuer beobachtet werden kann? Es erscheint durch die Brechung des Lichts in der heißen Luft noch stärker verzerrt als der im Wasser gespiegelte Mensch. Sehe ich ihn nicht direkt? Denn Luft ist auch zwischen ihm und mir, wenn er mir näher und weniger verzerrt ist. Weiterlesen

Rätselfoto des Monats April 2021

Wie kommt es zu den Feuchtigkeitsstrukturen?


Erklärung des Rätselfotos des Monats März 2021

Frage: Wie kommt es zu diesem Phänomen?

Antwort:
Bei einer Teepause, in der ich ein Stück Kandis in den Tee fallen ließ, entstand eine Blase und eröffnete mir einen kurzen Linsenblick auf das Stück Kandis. Dieses erschien nämlich deutlich verkleinert, so als ob man durch eine Zerstreuungslinse blickte. Wie kann das sein?
Da der Blase ohnehin nur eine kurze Lebensdauer beschieden war und die geselligen Umstände es unmöglich machten, der Sache vor Ort auf den Grund zu gehen, rekonstruierte ich die Situation später in einer Tasse mit Wasser und einem Tropfen Spülmittel und nahm einen Strohhalm zu Hilfe, mit dem ich auch noch die Größe der Blasen bestimmen konnte. Und anstelle des Kandis, legte ich eine Cent- Münze auf den Grund der Tasse.
Mit einer solchen Anordnung lässt sich schön verfolgen, dass die Münze wie ehemals der Kandis durch die Blase hindurch betrachtet tatsächlich verkleinert erscheint und zwar umso mehr je kleiner die Blase ist.
Zur Erklärung muss man sich zunächst klarmachen, dass es sich bei der Blase um eine Halbblase handelt und selbst das stimmt nur ungefähr. Damit eine Blase überhaupt als solche existieren kann, muss der Innendruck größer sein als der Außendruck. Denn die Tendenz der Seifenhaut, sich zu einem kugelförmigen Tropfen zusammenzuziehen muss durch einen höheren Innendruck kompensiert werden. Dadurch wird nicht nur die Seifenhaut straff gehalten, sondern im Falle der auf dem Wasser driftenden Halbblase auch die Wasseroberfläche ein wenig wie eine konkave Linse eingedellt. Blickt man durch eine solche Zerstreuungslinse, so erscheinen die durch sie betrachteten Gegenstände, also hier die 1-Cent-Münze verkleinert. Die verkleinernde Wirkung ist umso größer, je kleiner die die Blase und damit die Brennweite der von ihr geformten Linse ist .
In der obigen Abbildung ist die Blase wegen ihrer Transparenz nur indirekt zu erkennen – durch die tassenfarbene Spiegelung auf dem konkaven Rand der Blase und durch Interferenzfarben im Bereich des Spiegelbilds des lichtspendenden Fensters.

Rätselfoto des Monats März 2021

Wie kommt es zu diesem Phänomen?

 

 

 

 

 

 

 

 

 


Erklärung des Rätselfotos des Monats Februar 2021

Frage: Wie kommt es zur Stabilität der Eisbrücken?
Oder: Warum bricht sich das Eismonster nicht den Hals?
Antwort: Schaut man sich den dünnen „Hals“ des gläsernen Monsters an, so staunt man vielleicht darüber, dass der vergleichsweise große „Kopf“ durch ihn getragen werden kann. Dieses Erstaunen resultiert aber hauptsächlich daraus, dass unsere Anschauung über die Tragfähigkeit von Strukturen in anderen Größenordnungen ausgebildet wird. Das hier zu sehende Gebilde ist aber nur etwa 10 cm lang und das ist entscheidend.
Dass der Unterschied in der Größenordnung eine wesentliche Rolle spielt, kann man sich folgendermaßen veranschaulichen: Die Tragfähigkeit des Halses (Biegekraft des Kopfes auf den Hals) ist proportional zur Querschnittsfläche des Halses. Sie variiert ungefähr mit dem Quadrat der Größe des Monsters. Das Volumen und damit die Masse des Kopfes variieren aber mit der Größe hoch drei. Wenn wir uns nun vorstellen, dass das Gebilde linear (unter Beibehaltung der Proportionen) um den Faktor 10 vergrößert wird und damit etwa im uns vertrauteren Meterbereich angesiedelt wäre, so nimmt die Querschnittsfläche des Halses um den Faktor 10 mal 10 = 100 zu. Das Volumen des Kopfes wächst aber mit dem Faktor 10 mal 10 mal 10 = 1000. Wenn man davon ausgeht, dass die Querschnittfläche gerade ausreichend war, den Kopf des Monsters zu tragen, wird bei einem 10 mal größeren Gebilde die Querschnittsfläche um den Faktor 10 zu klein sein, denn es muss ein 10 mal größeres Volumen tragen. Daher sind Hälse umso plumper/graziler, je größer/kleiner die Geschöpfe.

Rätselfoto des Monats November 2020

Was haben Schneebeeren mit Schnee gemeinsam?

Weiterlesen

Kleine Wassertropfen ganz groß

Wassertropfen umgeben uns allenthalben im Alltag. Auf dem Foto sieht man einige, an Spinnfäden hängende Tropfen im Vergleich zu einem etwa 2 Millimeter dicken Draht, der als Maßstab für die Einschätzung der Größe der anderen Tropfen dienen kann (zur Vergrößerung auf Bild klicken). Es zeigt sich, dass die Tropfen, die einen kleineren Durchmesser als der Draht haben, so gut wie kugelrund sind, wenn man einmal von kleinen Spitzen absieht, die durch teilweise unsichtbare Spinnfäden bedingt sind, an denen die Tropfen hängen. Weiterlesen

Selbstabbildung der Natur – Ringe und Kreuze

Ein Stein fällt in ein Becken mit Wasser, reißt eine Portion Luft mit sich, die in Form von vier (Halb-) Blasen an die Oberfläche steigen und hier einige Zeit verbringen (siehe Foto).
Schon platzt die erste Blase. Sie wäre einfach weg, wenn nicht die Sonne die dadurch ausgelösten direkt nicht zu sehenden Wellenbewegungen auf dem Wasser auf dem Grund des Beckens abbilden würde. Dort sieht man ein eindrucksvolles System heller und dunkler Ringe. Sie entstehen dadurch, dass das Sonnenlicht an den Wellen gebrochen wird, sodass die Wellenberge wie ringförmige Sammellinsen wirken, während die Wellentäler das Licht ringförmig streuen. Weiterlesen

Selbstabbildung der Natur

Während das Original der Brennesselpflanze im grünen Allerlei der Umgebung untergeht, sind die natürlichen Gegebenheiten in dem Moment da ich an dieser Szenerie vorbeigehe gerade so, dass der Weidezaunpfosten seine Breitseite als Projektionswand anbietet, an der die Sonne ein schattenhaftes Portrait der Nessel entwirft.
Das Zeitfenster war nicht groß, das Abbild in dieser Form zu sehen zu bekommen. In wenigen Minuten war das kleine Naturschauspiel vorbei. Auf dem Rückweg von der kleinen Wanderung hatte ich genügend Zeit über diese kleine Alltagsepiphanie nachzusinnen: Der Pfahl hatte schon lange die von ihm zugedachte Funktion verloren. Die ehemals eingezäunte Wiese war einem Feld gewichen. Und wenn der Pfahl nicht aus lange haltbarer Eiche geformt worden wäre, gäbe es ihn und damit auch diese Naturzeichnung nicht.

 

Rechteckige Blicke

Obwohl Rechtecke, gerade Linien, Kreise … in der Natur nur in mehr oder weniger guter Annäherung vorkommen, spielen sie in unseren Wahrnehmungen und darin zum Ausdruck kommenden Anschauungen, Einschätzungen und Beurteilungen natürlicher – oder besser: naturwüchsiger Dinge und Vorgänge eine kaum zu überschätzende Rolle. Das nebenstehende Foto ist dafür ein typisches Beispiel. Wir blicken auf eine flächenhafte Abgrenzung einer Baustelle. Man könnte das Material im Hintergrund vielleicht als Sperrholz ansehen, wenn es nicht die krummen Schattenlinien enthielte. Sie können nur von dem Drahtgitter ausgehen, das aus rechteckigen Feldern besteht. Die Verzerrungen der Schatten können also nur von einer unebenen Projektionsfläche herrühren, wie sie z.B. durch eine flexible Folie oder Plane gegeben wäre. Das ist hier auch tatsächlich der Fall.
Die Erkenntnis, dass erst der Blick durch ein schattenwerfendes Gitter eine realistische Einschätzung der Unebenheit einer Projektionsfläche erlaubt, wird bei der Visualisierung von dreidimensionalen Strukturen auf zweidimensionalen Medien (z.B. Papier, Bildschirm) seit langem in verschiedenen Bereichen ausgenutzt. Manchmal reichen auch bekannte Strukturen aus (z.B. Gebäude, Fenster), die auf bestimmten Projektionsflächen (z.B. einer Fensterscheibe) verzerrt erscheinen, um Rückschlüsse auf die ansonsten nicht zu erkennende Form der Flächen zu ziehen.

Rätselfoto des Monats September 2020

Welche physikalischen Vorgänge führen zu diesen Strukturen?


Erklärung des Rätselfotos des Monats August 2020

Frage: Was passiert hier?

Antwort: Das Foto ist an sich nicht manipuliert, es wird hier nur kopfstehend präsentiert, um das Rätsel auf dem Foto noch etwas zu vertiefen. Dreht man das Foto richtig herum, so erkennt man, dass es sich bei den Bäumen um Reflexionen im Wasser handelt. Indem ein Stein ins Wasser geworfen wurde, machten sich von der dadurch bewirkten Störung der Wasseroberfläche Ringwellen auf den Weg zum Ufer. Das durch die Störung erzeugte Wellenpaket enthält anschaulich gesprochen zahlreiche Wellen, die sich nach dem Ereignis nach Wellenlängen sortieren. Die Wellen mit der größeren Wellenlänge haben eine größere Ausbreitungsgeschwindigkeit und eilen denen mit der jeweils kleineren Wellenlänge voraus. Das gibt dem Ringmuster einen ästhetischen Reiz, der allerdings erst dadurch sichtbar wird, dass das von den umstehenden Bäumen auftreffende Licht den Deformationen der Wasseroberfläche entsprechend reflektiert wird.
In der Mitte sieht man den Reflex eines Baumstamms, dessen quer über das Ringsystem verlaufender Reflex dem Auf- und Ab der Wellen entsprechend als Schlangenlinie erscheint. Der Eindruck der schüsselförmigen Vertiefung des Ringsystems ist eine optische Täuschung aufgrund des umgedrehten Fotos. Denn dadurch wird insbesondere die Perspektive umgekehrt.

 

Die Kunst eine Brille abzulegen

Um einer möglichen bösen Überraschung vorzubeugen, die darin bestehen könnte, dass die Brille vom Buch herunterrutscht und auf dem Fliesenboden zerbricht, habe ich sie mit dem einen Glas in der v-förmigen Vertiefung zwischen den beiden Buchseiten verankert.
Damit ging nun aber eine andere weniger böse, weil optische Überraschung einher. Das Brillenglas schien verzerrt, jedenfalls wenn man auf das Schattenbild blickte. Zum Glück gehen optische im Unterschied zu mechanischen Einwirkungen zärtlich mit den Gegenständen um, indem sie nur virtuelle und zudem reversible Deformationen und Verrückungen und das auch nur im Schattenbild hervorrufen. Bleibende Schäden sind daher nicht zu erwarten.
Außerdem tun sie das sehr herzlich.

Rätselfoto des Monats Juni 2020

Wie kommt der Schatten in den Schatten?


Erklärung des Rätselfotos des Monats Mai 2020

Frage: Was ist physikalisch interessant an diesem Blick in ein Schaufenster?

Antwort: Als ich an den Schaufenstern eines Modegeschäfts vorbeiging nahm ich aus dem Augenwinkel wahr, dass sich dort etwas in umgekehrter Richtung bewegte. Es hörte sofort auf, als ich stehenblieb und nach der Ursache für diese Bewegung suchte. Ich sah eine Schaufensterpuppe in einem überdimensionalen Folienspiegel abgebildet. Gleichzeitig sah ich mich selbst darin gespiegelt allerdings kopfstehend. Die Puppe und ich standen vor einem Hohlspiegel. Warum war sie „aufrichtig“ und ich „verkehrt“. Die Ursache für diesen Unterschied lag in der unterschiedlichen Entfernung vom Spiegel. Die Puppe befand sich innerhalb der einfachen Brennweite des Spiegels und wurde wie beim vergrößernden Schminkspiegel den Reflexionsgesetzen gemäß aufrecht abgebildet. Ich selbst befand mich weiter entfernt zwischen einfacher und doppelter Brennweite und wurde wie die  Gebäude im Hintergrund auch kopfstehend abgebildet.

Natürliche Zerrspiegel

Als ich jemandem das Foto mit den beiden Schwänen zeigte, kam die witzig gemeinte Bemerkung. Die armen Schwäne müssen doch irgendwann verzweifeln, wenn sie ständig ein solches Selbstbild vor Augen haben. Müssen sie nicht, denn sie können es gar nicht sehen, wie man aus eigener Erfahrung feststellen kann, wenn man selbst in einem leicht welligen Gewässer schwimmt und die Spiegelungen auf den Wasser im Blick hat. Wenn man in der Nähe des Ufers schwimmt, zeigen die Spiegelbilder die verzerrte Ufergegend (Bäume, Häuser). Weiter draußen sind es eher schwankende Bereiche des Himmels, die umso langweiliger sind, je weniger bewölkt es ist. Weiterlesen

Rätselfoto des Monats Mai 2020

Was ist physikalisch interessant an diesem Blick in ein Schaufenster?


Erklärung des Rätselfotos des Monats April 2020

Frage: CD-Rohling ins Gegenlicht gehalten. Wie kommen die Farbstreifen in den Schatten?

Antwort: Der Schatten einer Hand, die eine CD umfasst, scheint von einem Strahlenkranz durchleuchtet zu werden (links). Ursache ist ein sogenanntes Axicon. Das ungewöhnliche Beugungsphänomen entsteht nur, wenn die metallische Beschichtung der CD entfernt wurde, so dass ihre Spurrillen als Transmissionsgitter dienen können. Eine ausführliche Beschreibung findet man unter: Licht im Schatten.

 

Das Streicheln der Unendlichkeit

Bei Sonnenuntergang sehen alle Städte wunderbar aus, doch manche eben mehr als andere. Reliefe werden geschmeidiger, Säulen runder, Kapitelle lockiger, Gesimse energischer, Turmspitzen strenger, Nischen tiefer, Jünger sehen drapierter aus, Engel schwebender. In den Straßen wird es dunkel, doch es ist immer noch Tag für die Fondamenta und jenen gigantischen flüssigen Spiegel, wo Motorboote, Vaporetti, Gondeln, Dingis und Barken wie verstreute alte Schuhe eifrig auf barocken und gotischen Fassaden herumtrampeln und weder deine eigene Spiegelung noch die einer vorüberziehenden Wolke verschonen .“Abbilden“ wispert das Winterlicht, das nach seiner langen Reise durch den Kosmos schlicht an der Ziegelwand eines Hospitals hängen bleibt oder heimkehrt in das Paradies von San Zaccarias Giebel. Und du spürst die Müdigkeit dieses Lichts, das noch etwa eine Stunde lang in den Marmormuscheln von Zaccaria ruht, während die Erde dem Lichtgestirn die andere Wange bietet. Das ist das Winterlicht in seiner reinsten Gestalt. Es bringt weder Wärme noch Energie, die es irgendwo im Universum oder in der nahen Kumuluswolke abgeworfen und hinter sich gelassen hat. Das einzige Bestreben seiner Partikel ist es, einen Gegenstand zu erreichen und ihn, sei er groß oder klein, sichtbar zu machen. Es ist ein privates Licht, das Licht von Giorgione oder Bellini, nicht das Licht von Tiepolo oder Tintoretto. Und die Stadt verweilt darin und genießt seine Berührung, das Streicheln der Unendlichkeit, aus der es kam. Ein Gegenstand ist es schließlich, was die Unendlichkeit zu etwas Privatem macht.*

Diese poetische Beschreibung eines Sonnenuntergangs, wie man ihn in einer bestimmten Stadt erleben kann, nutzt physikalische Begriffe, um den Worten zusätzliches Gewicht zu verleihen und dem aktuellen Sprachgebrauch entsprechend aufzuladen. Da ist vom Universum, von Energie die Rede, die an Kumuluswolken abgegeben wird, von der Erde als Lichtgestirn, von Lichtpartikeln, die die Gegenstände sichtbar machen usw., ohne dass in irgendeiner Weise einer physikalischen Theorie Rechnung getragen wird. Und dennoch hat man das Gefühl, genau nachempfinden zu können, was gemeint ist. Selbst das Streicheln der Unendlichkeit bekommt einen, wenn auch nicht konkreten, so doch unmittelbar einleuchtenden, vertrauenswürdigen Sinn. In die Alltagswelt abgesunkene, ursprünglich in den Wissenschaften wurzelnde Begriffe, übernehmen nicht nur jeder für sich, sondern auch in fachlich klingenden Zusammenhängen eine metaphorische Rolle, deren Aussagekraft im Bereich der Beschreibung von Stimmungen einer denkbaren (?) wissenschaftlichen Beschreibung übertrifft.


* Aus: Joseph Brodsky. Ufer der Verlorenen. Frankfurt 2002, S. 56

Photoarchiv