Um die Schönheit solcher Tropfen genießen zu können, muss man sich auf das Niveau der Grashalme herablassen. Weil die Kamera oder das Auge den Tropfen in den Fokus nimmt, verschwimmt die Welt dahinter in einem Einerlei von Grüntönen. Aber die Strukturen gehen einem nicht ganz verloren, weil der Tropfen zumindest einen Teil des aus dieser Hinterwelt kommenden Lichts wie eine Lupe fokussiert und auf diese Weise die schon dem Blick verloren geglaubten Gräser mit einiger Schärfe wieder rekonstruiert. Das Ergebnis eines solchen Wechsels zwischen scharf und unscharf ist vermutlich ein weiteres ästhetisches Detail, das vielleicht unbewusst zur Schönheit des Gesamteindrucks beiträgt.
Es gibt aber auch noch kleinere Tropfen, die selbst in dieser Vergrößerung nicht mehr in allen Details zu erkennen sind. Sie kommen aber dem Ideal einer Kugel näher als die größeren.
Wieso sind kugelförmige Tropfen ein Ideal? Eine Antwort auf die Frage sind physikalische Prinzipien, denen sich auch die winzigen und daher kaum bemerkten Tropfen nicht entziehen können.
Die Wassertropfen stehen gewissermaßen unter dem Zwang die Kugelgestalt anzunehmen, weil das Volumen einer Portion Materie in Form einer Kugel von der kleinstmöglichen Oberfläche begrenzt wird. Damit wäre aber auch die zur Oberfläche proportionale Oberflächenenergie minimal. Und da jedes (abgeschlossene) System auf dieser unserer Welt so beschaffen ist, dass es so viel Energie wie unter den jeweils gegebenen Umständen möglich an die Umgebung abgibt, wäre damit diesem sogenannten Entropieprinzip Genüge getan.
Aber ein Tropfen ist nicht allein auf dieser Welt, er unterliegt folglich äußeren Einflüssen, die eine ideale Kugelgestalt der Wassertropfen unmöglich machen. Wir sehen also im Grunde so etwas wie energetische Kompromisse – aber sie sind es, die die Welt vielfältig, anregend und schön erscheinen lassen.
Ein Blatt, das im stürmischen Regenschauer vom Baum heruntergerissen kommt rücklings auf dem Boden zu liegen. Einige versprengte Wassertropfen sind in muldenförmigen Vertiefungen des Blatts zur Ruhe gekommen, malerisch inszeniert durch die inzwischen wieder dominierende Sonne. Das zeigt sich nicht nur in den Schattierungen des Blattes, sondern auch in den hellen Lichtflecken. Diese kommen dadurch zustande, dass die Wassertropfen wie Sammellinsen wirken und das Licht auf einen Lichtfleck fokussieren. Dieser ist im Vergleich zur Umgebung so hell, dass die grüne Farbe des Blattes überstrahlt wird (Irradiation bzw. Blooming). Außerdem wirkt die Tropfenlinse als Lupe und zeigt die Struktur des Blattes in leicht vergrößerter Form.
Dass der aufprallende Regen sich in Tropfen sammelt ist der Minimierung der Grenzflächenenergie zwischen Wasser, Blatt und Luft zu verdanken. Um die Grenzflächenenergie zu minimieren strebt das Wasser die Form an, die unter den gegebenen Bedingungen die kleinste Grenzfläche hat – das ist die Kugel. Sie wird allerdings näherungsweise nur von den kleinen Tropfen erreicht, weil einerseits der Einfluss der Schwerkraft umso geringer ist, je kleiner die Masse der Tropfen ist und andererseits für die Ausbildung einer Grenzfläche mit dem Blatt verhältnismäßig viel Energie nötig ist. Man sagt auch, das Blatt sei hydrophob. Die Hydrophobie wird hauptsächlich durch winzige Härchen auf den Blättern hervorgerufen, auf denen die Tropfen gewissermaßen ruhen und daher nur winzige Berührflächen mit dem Blatt haben.
Trotzdem oder vielleicht gerade deshalb ein naturschöner Anblick.
Meine Schwester schickte mir das Foto mit der Frage, warum sich der Schaum derartig aufbaut und sogar bestehen bleibt. Sie war nämlich dabei eine Vase zu reinigen und erlebte beim Einfüllen des Spülwassers ein erstaunliches Schaumwachstum. Der Schaum quoll weit über die Vase hinaus und schien in dieser Position verharren zu wollen.
Indem ich daran dachte, wie der Bierschaum beim ungestümen Einschenken in die Höhe schießt oder daran, wie beim Pusten mit einem Strohhalm in das Spülwasser ganze Berge von Schaum aufgetürmt werden können, kam mir die Antwort zunächst sehr einfach vor.
Doch dann ergab sich die Frage, woher das Gas kommt, mit dem die vielen Blasen des Schaums gefüllt wurden?
Nach einigen Beratungen und Experimenten ergibt sich die folgende Antwort:
Wenn man zunächst das Spülmittel und dann das Wasser oder auch das bereits mit Spülmittel gemischte Wasser in die Vase gießt, wird mit dem Flüssigkeitsstrahl reichlich Luft mitgerissen und mit der Flüssigkeit vermischt.
Während der anschließenden Beruhigungsphase, in der sich Luft und Flüssigkeit wieder ihrer unterschiedlichen Dichte entsprechend ordnen, steigen die Luftbläschen aus der Flüssigkeit auf, um sie wieder zu verlassen. Doch dabei müssen sie die die Grenzschicht zwischen Flüssigkeit und Luft durchqueren. Da diese Grenzschicht aber durch das Spülmittel entspannt ist und so etwas wie eine dehnbare Haut darstellt, werden dabei mehr oder weniger kleine Blasen aufgeblasen und von den auf dieselbe Weise entstehenden nachfolgenden Blasen hochgeschoben. Der Vorgang hält solange an, bis sich die Luft völlig aus der Flüssigkeit befreit hat .
Doch was heißt hier schon „befreit“, letztlich ist sie in Blasen portioniert gefangen und kann nicht aus dieser ihrer Haut. Vielmehr treiben die späteren die früheren Blasen vor sich her. Dabei quillt der so entstehende Schaum aus dem Glas heraus.
Je nach Art des Spülmittels kann das Schaumgebilde auch nur mehr oder weniger lange existieren. Schließlich müssen die Blasen dann doch die gefangene Luft wieder freigeben.
Wodurch und warum wird die spiegelnde Reflexion auf Teilen des Wassers verhindert?
Erklärung des Rätselfotos des Monats Juli 2021
Frage: Was hält die Burg zusammen?
Antwort: In trockenem Zustand rinnt Sand durch unsere Finger. Kaum gerät Sand jedoch mit Wasser in Berührung, fließt er nicht mehr und lässt sich in nahezu beliebige feste Gestalt bringen. Wenn sich trockener, also von Luft umgebener Sand mit Wasser verbindet, wird dabei verhältnismäßig viel Grenzflächenenergie an die Umgebung abgegeben. Und da die Natur bestrebt ist, soviel Energie wie unter den gegebenen Bedingungen möglich ist, an die Umgebung abzugeben, werden so viel Sand wie möglich mit Wasser benetzt und dabei so viele Sandkörner wie möglich miteinander verbunden. Wollte man die Körner wieder voneinander trennen und damit die energiereicheren Grenzflächen zwischen Luft und Sand wieder herstellen, müsste man die bei der Benetzung abgegebene Energie wieder zurück in das System stecken. Die dazu nötige Kraft ist Ausdruck der Steifigkeit und Festigkeit des nassen Sands. Durch die z.B. von der Sonne geförderte Verdunstung des Wassers wird der Sand allmählich wieder trocken und die Burg zerfällt.
Man schaue sich die Wimpern dieses Kindes an. Sie scheinen sorgfältig gestylt, zu spitz auslaufenden Bündeln vereinigt. Dahinter steckt jedoch keine exaltierte Mutter, sondern letztlich Mutter Natur. Denn das Kind hat nur heftig im Wasser geplanscht. Alles andere geschah von selbst (Selbstorganisation). Wer mit dem Tuschpinsel vertraut ist, kennt das Phänomen in einem völlig anderen Kontext. Solange sich der Pinsel in Wasser befindet, bleiben seine Borsten in etwa so buschig wie außerhalb. Weiterlesen
Diese Blüte einer Prachtkerze sieht zwar tropfenbehängt etwas traurig aus, obwohl sie bis jetzt keine Anstalten macht, das Blühen jahreszeitbedingt aufzugeben. Schaut man sich einige Wassertropfen etwas genauer an, so könnte man den Eindruck gewinnen, dass sich die Blüte mit auffallend vielen dieser Klunker behängt hat. Insbesondere der untere Tropfen erinnert an ein sorgfältig eingefasstes Schmuckstück – Bergkristall vielleicht.
Dass das Regenwasser nicht einfach an der Pflanze und ihren Blüten abperlt, hat vor allem zwei Ursachen. Zum einen nehmen Wasserportionen unter dem Einfluss ihrer Grenzflächenspannung mit der Luft die kleinstmögliche Oberfläche ein, um Energie zu sparen. Im Idealfall wäre das die Kugelgestalt. Doch die Erde (Schwerkraft) zerrt an den so entstandenen Tropfen und führt zu mehr oder weniger großen Abweichungen. Zum anderen sind die Pflanze und ihre Blüten wasserliebend. Das heißt, die gemeinsame Grenzfläche zwischen Pflanze und Wasser erfordert weniger Energie als die zwischen Wasser und Luft. Daher haften die Wassertropfen bis zu einer bestimmten Größe noch lange an der Pflanze und lassen sie je nach Stimmung schön und traurig oder schön und fröhlich erscheinen.
Bei einem leichten Regen waren die Fliesen der Terrasse mit einem Wasserfilm benetzt. Die leicht abschüssige Terrasse sorgte dafür, dass nur eine dünne Wasserschicht auf den wasserliebenden (hydrophilen) Fliesen verblieb. Lediglich an einer Stelle, an der ein Vogel seinen Schiss hinterlassen hatte, blieb es trocken. Interessanterweise wurde nicht nur die Auftreffstelle des Kots wasserfrei, sondern in einem bestimmten Umkreis kam es zu einer vollständigen Entnetzung der getroffenen Fliese (siehe Foto).
Offenbar hatte sich ein wasserentspannender Bestandteil um den eigentlichen Fleck herum ausgebreitet und das Wasser verdrängt.
Weiterlesen
Manche Blasen halten sehr lange. Zum Beispiel die Schaumblasen auf dem Cappuccino oder die Blasen, die sich zu einem Eischnee vereinigt haben. Es gibt aber auch Situationen, in denen die Blasen im Verbund eines gerade entstandenen Schaumgebildes manchmal sogar mit einer Serie von hörbaren Klicken in schneller Folge ihr just begonnenes Leben wieder aushauchen. Weiterlesen
H. Joachim Schlichting. Spektrum der Wissenschaft 1 (2020) S. 72 – 73
Die Blasen in Sekt und anderen kohlensäurehaltigen Getränken sind auch für Forscher faszinierend – besonders, wenn sie an der Oberfläche zerplatzen. Dabei springen feine Tröpfchen hoch, die Aromastoffe verteilen.
Würden alle Dinge zu Rauch,
mit der Nase wüsste man sie zu unterscheiden
Heraklit (um 520 – 460 v. Chr.)
Viele Getränke enthalten Kohlendioxid. Unmittelbar nach dem Einschenken bildet es Blasen, steigt auf und geht schließlich in die Luft über. Doch bis dahin ist es ein physikalisch ereignisreicher Weg.
Ursprünglich löst sich das Gas in den Getränken unter hohem Druck. Die Flaschen trennen es dann luftdicht von der Außenwelt. Die Löslichkeit von Kohlendioxid steigt mit dem Druck. Champagner und Sekt enthalten im Vergleich zu Bier und Sprudelwasser sehr viel CO2 und brauchen darum besonders dicke Wände, um dem standzuhalten.
In der verschlossenen Flasche stellt sich zwischen der Flüssigkeit und der Gasschicht im Hals ein Gleichgewichtsdruck ein. Hierbei verlassen im zeitlichen Mittel genauso viele Gasteilchen die Flüssigkeit, wie diese aufnimmt. Wenn man die verschlossene Flasche schüttelt, entstehen vermehrt Bläschen im Inneren, und der Druck des Gases im Flaschenhals erhöht sich. Sobald Ruhe einkehrt, stellt sich das stationäre Gleichgewicht wieder ein – das zwischenzeitlich befreite CO2 geht erneut in die Lösung.
Beim Öffnen der Flasche kommt es zum Druckausgleich mit der Umgebung. Er macht sich je nach der Vorbehandlung der Flasche und der Temperatur akustisch und strömungstechnisch gegebenenfalls spektakulär bemerkbar (siehe »Lasst die Korken knallen«, Spektrum Januar 2017, S. 63).
Nach dem Einschenken in ein Glas ist das Getränk weiterhin dem wesentlich niedrigeren Umgebungsdruck ausgesetzt, und die Flüssigkeit gibt allmählich den Rest des überschüssigen gelösten Gases ab. Es sammelt sich in kleinen Bläschen, die nach und nach aufsteigen. Sie entstehen nicht an beliebigen Stellen, sondern meistens an bestimmten Bereichen der Glaswand. Dort befinden sich in der Regel mikroskopisch kleine Kratzer oder Verunreinigungen, zum Beispiel winzige Fasern des Handtuchs, mit dem das Glas abgetrocknet wurde. Diese so genannten Keime enthalten meist etwas Luft, an welcher die angehenden Blasen andocken können. Ohne solche Starthilfen wäre für die Entstehung theoretisch ein unendlich großer Druck nötig, denn der ist in einer Blase umgekehrt proportional zu ihrem Radius.
Während die Blase größer wird, kommt die Schwerkraft ins Spiel, nämlich in Form des Auftriebs. Dieser wächst mit dem Volumen, also wie der Radius hoch drei. Die Adhäsionskraft, mit der die Blase ihrem Entstehungsort zunächst verbunden bleibt, steigt aber nur proportional zu der Berührfläche, also wie der Radius hoch zwei. Irgendwann übertrifft also der Auftrieb die Adhäsion. Dann löst sich die Blase ab. Nur ein Rest bleibt hängen, an dem sofort die nächste heranwächst und so weiter.
Die Bedingungen, unter denen die Gasteilchen in die Blase gelangen, verändern sich innerhalb üblicher Beobachtungzeiten nicht besonders. Darum ist auch die Zeitspanne zwischen zwei Ablösevorgängen dieselbe. Die Bläschen folgen daher im gleichen Takt aufeinander und steigen meist in einer Art Perlenschnur senkrecht auf. Bei Getränken mit sehr hoher CO2-Konzentration muss man sich dafür oft etwas gedulden – hier gibt es anfangs häufig eher turbulente Bewegungen der aufsteigenden Blasen.
Im Verlauf des Aufstiegs nehmen dann die Abstände zwischen zwei benachbarten Blasen zu. Liegt das etwa an deren Beschleunigung durch die Auftriebskraft? Allerdings muss die Flüssigkeit den winzigen Blasen wie Sirup vorkommen. In einer solchen Situation erreicht die Reibungskraft, die mit der Geschwindigkeit wächst, bereits nach sehr kurzer Strecke den Wert des Auftriebs. Beide sollten sich also rasch ausgleichen und zu einer gleichförmigen Bewegung führen.
Schaut man sich die Perlenketten genauer an, so stellt man vielmehr fest, dass nicht nur der Abstand mit der Aufstiegshöhe zunimmt, sondern auch die Größe der Blasen. Mehr Volumen bedeutet mehr Auftriebskraft und damit eine höhere Geschwindigkeit.
Doch warum werden die aufsteigenden Blasen größer? Man könnte auf den Gedanken kommen, das läge an der geringer werdenden Last durch immer weniger darüber befindliches Wasser. Doch dieser so genannte hydrostatische Druck beträgt bei einer Wassersäule von typischerweise zehn Zentimeter nur ein Hundertstel des atmosphärischen Luftdrucks – dieser entspricht einer etwa zehn Meter hohen Wassersäule. Daher dürfte der Einfluss vernachlässigbar klein sein. Entscheidend für das Wachstum der Blasen ist vielmehr, dass sie auch während ihres Aufstiegs weiterhin CO2 aufnehmen.
An der Oberfläche scheiden sie spektakulär aus ihrem kurzen Leben. Sie verbleiben dort noch eine mehr oder weniger kurze Zeit und wachsen weiter. Schließlich platzen sie und entlassen das Kohlendioxid in die Atmosphäre. Da der Genuss insbesondere von hochwertigem Sekt und Champagner von kleinsten Details der physikalischen Vorgänge abhängt, spielen auch diese Miniexplosionen eine besondere Rolle. Denn dabei entstehen Fontänen winziger Tröpfchen, die in schlanken Wurfparabeln bis zirka 20 Zentimeter über das Glas hinaussteigen und Aromastoffe in die Luft transportieren. Hinzu kommt die rauschende akustische Untermalung durch die Summe der feinen Klickgeräusche der platzenden Blasen.
2014 haben französische Forscher das Platzen mit Hilfe von Hochgeschwindigkeits-Mikroaufnahmen dokumentiert und in mathematischen Modellen beschrieben. Sie erkannten: Bei den auf der Oberfläche driftenden Blasen fließt unter anderem auf Grund der Schwerkraft Flüssigkeit aus dem dünnen Häutchen ab, welches das eingeschlossene CO2 nach außen abdichtet. Der Film wird bereits nach sehr kurzer Zeit so dünn, dass der Überdruck in der Blase ausreicht, ihn zu zerfetzen. Daraufhin entsteht kurzfristig eine Vertiefung, die die allseitig zusammenströmende Flüssigkeit anschließend wieder füllt. Dabei ist nicht die Schwerkraft entscheidend, sondern die stets angestrebte Minimierung der Oberflächenenergie. Bei dem Vorgang treffen so genannte Kapillarwellen in der Mitte aufeinander und lassen eine Minifontäne hochschießen (siehe Illustration …).
Die Fontäne zerfällt in Tröpfchen – wiederum, um die Oberflächenenergie zu minimieren (siehe »Winzige Tröpfchen ganz groß «, Spektrum Juli 2018, S. 62). Die kleinsten von ihnen driften mitsamt der darin gelösten Aromen noch einige Zeit als Aerosol in der Luft. Teilweise kann man die Geschosse sogar als kleine Piekser spüren, wenn sie auf der Haut niedergehen. Das liegt nicht nur an der Empfindlichkeit dieses Organs, sondern auch an der großen Verdampfungsenergie des Wassers, aus dem der Sekt ja zum größten Teil besteht. Während er in den gasförmigen Zustand übergeht, entzieht er der Haut Wärmeenergie.
Ein weiteres interessantes Untersuchungsergebnis: Die Tröpfchen sind – anders, als man es vielleicht erwarten würde – umso kleiner und schneller, je zäher die Flüssigkeit ist, aus der sie bestehen. Solche Erkenntnisse könnten Hersteller anregen, die Viskosität ihres Produkts gezielt zu verändern, um die Ausbreitung der Tröpfchen in der Luft zu beeinflussen – und damit auch den Genuss des prickelnden Getränks.
Quelle
Ghabache E. et al.: On the physics of fizziness: How bubble bursting controls droplets ejection. Physics of Fluids 26, 2014
H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2019), S. 58 – 59
Durch eine Bewegung oder einen Sprung
kann Wasser sich erheben
Leonardo da Vinci (1452–1519)
Wenn ein Wasserstrahl auf eine ebene Fläche trifft, bildet sich ringsum eine dünne, kreisförmige Schicht, die sich in etwas Abstand plötzlich zu einem Flüssigkeitswall auftürmt. Weiterlesen
Hier hat die Spinne sich einiges eingefangen, auf das sie vermutlich keinen großen Wert legt – Tautropfen. Dadurch ist das Netz einigermaßen durcheinander gebracht worden, indem einige Abschnitte des spiralförmigen Fangfadens* mitbenachbarten „verklebten“ und damit relativ große Durchfluglöcher für potenzielle Beutetiere geschaffen wurden. Für mich ist es allerdings ein richtiger Hingucker: Im Licht der Sonne vor dem frisch grünen Hintergrund sind diese Symmetriebrüche eher eine ästhetische Bereicherung. Weiterlesen