Um auf die Bedeutung des Lichts in allen Lebensbereichen aufmerksam zu machen, hat die UNESCO den 16. Mai zum Internationalen Tag des Lichts erklärt. Das möchte ich zum Anlass nehmen, auf den ganz alltäglichen Sonnenaufgang hinzuweisen, der weder sprachlich noch physikalisch das ist, was er zu sein vorgibt. Sprachlich geht hier nichts auf, was vorher zu war. Da entsteht nichts, was später wieder verschwindet. Sowohl im geozentrischen als auch im heliozentrischen Weltbild entsteht dieser Eindruck dadurch, dass sich die Erde und die Sonne relativ zueinander bewegen. Wir gehen neuzeitlich-kopernikanisch davon aus, dass die Erde sich um die Sonne dreht und nicht umgekehrt, weil ansonsten beispielsweise die Sterne – je weiter desto schneller – kollektiv um die Erde rotieren müssten und das für weit entfernte Sterne auch noch mit Überlichtgeschwindigkeit. Trotzdem bleibt es beim Sonnenauf- und -untergang.
Was schon eher Kopfzerbrechen bereiten könnte, ist die Tatsache, dass wir die Sonne beim Auf- und Untergang nie da sehen, wo sie „in Wirklichkeit“ oder „geometrisch“ ist. Denn infolge der Brechung des Lichts bei ihrem langen Weg durch die Atmosphäre wird das Sonnenbild optisch angehoben und zwar etwa um einen Winkel, der dem Sonnendurchmesser entspricht (etwa 0,5 Grad). Wenn die Sonne beim Untergang den Horizont berührt, ist sie also „in Wirklichkeit“ schon untergegangen.
Diesen Gedanken könnte man philosophisch oder wie auch immer weiter vertiefen in Richtung auf die Frage, ob man denn ganz genau genommen (mit vielen Stellen hinter dem Komma) überhaupt je etwas dort sieht, wo es ist. Denn Lichtbrechung – und sei sie sie noch so klein – ist immer vorhanden, wenn Licht von einem Medium ins andere übergeht oder sich zum Beispiel die Dichte der Luft ändert. Überlegungen, die in diese Richtung laufen, kommen daher kaum zu einem befriedigenden Ergebnis. Eine ähnlich Spitzfindigkeit ergibt sich, wenn man wegen der Endlichkeit der Lichtgeschwindigkeit davon ausgehen würde, dass die Gegenstände stets einen Moment später und daher möglicherweise an der Stelle anderen Stelle gesehen werden. Bei der Sonne macht diese Differenz immerhin etwas 8 Minuten aus.
Also lassen wir es und erfreuen uns am Abbild der Sonne die hier (Foto) hinter dem Geäst von Bäumen untergeht. Das Sonnenlicht hat beim Durchgang durch die Atmosphäre und den zahlreichen Streuvorgängen mit der Luft und den darin enthaltenen Aerosolen so viel an Farben und Intensität eingebüßt, dass es nicht mehr weiß leuchtet, sondern hauptsächlich in gelben und roten Farbtönen (er)scheint. Man kann dann sogar bedenkenlos in die Sonne hineinblicken und beobachten, wie schnell sie absinkt. Wenn das Sonnenbild den Horizont „berührt“, dauert es gerade einmal 2 Minuten, bis der letzte Rest ihres Rands verschwindet. Und wenn man Glück hat, viel Glück, dann kann man auch noch erleben, dass sie sich mit einem grünen Blitz verabschiedet.
Wenn man will kann man daraus weitere tiefschürfende Gedanken schöpfen, wie beispielsweise im folgenden Text ausgeführt:
„Worum geht es? Durch den kopernikanischen Schock wird uns demonstriert, daß wir die Welt nicht sehen, wie sie ist, sondern daß wir ihre „Wirklichkeit“ gegen den Eindruck der Sinne denkend vorstellen müssen, um zu „begreifen“, was mit ihr der Fall ist. Da liegt das Dilemma: wenn die Sonne aufgeht, geht nicht die Sonne auf. Was die Augen sehen und was der astrophysisch informierte Verstand vorstellt, kann nicht mehr miteinander zur Deckung kommen. Die Erde wälzt sich im leeren Raum um sich selbst nach vorn, wobei der irreführende Eindruck entsteht, wir sähen die Sonne aufgehen. Solange das Universum besteht, gab es noch keinen Sonnenaufgang, sondern nur sture Erdumdrehungen, und dieser Befund wird nicht tröstlicher dadurch, daß wir aufgrund radioastronomischer und anderer Messungen zu der Vorstellung gezwungen sind, daß es vor einem Zeitpunkt t(x) weder die Sonne noch die Erde noch Augen gegeben hat, um deren Konstellationen zu sehen. Dann wären nicht nur die Sonnenaufgänge, sondern auch die Voraussetzungen des Scheins von Sonnenaufgängen in einem kosmischen Noch-Nicht verschwunden. Der augenscheinliche Sonnenaufgang verliert sich in einer mehrfachen Nichtigkeit, sobald wir den ptolemäischen „Schein“ zugunsten kopernikanisch organisierter Vorstellungen von „Wirklichkeit“ aufgeben. Radikaler als jedes metaphysische Vorstellen von „Wesenswelten“ dementiert das moderne physikalische Vorstellen der Körperwelt den ‚Schein der Sinne‘.“
___________________________________________________________________________________________________
Sloterdijk, Peter: Kopernikanische Mobilmachung und ptolemäische Abrüstung. Frankfurt a M 1987.
Ein Sonnenaufgang ist schon lange nicht mehr das, was er sprachlich vorgibt zu sein. Da geht nichts auf, was vorher zu war. Da entsteht nichts, was später wieder verschwindet. Sowohl im geozentrischen als auch im heliozentrischen Weltbild entsteht dieser Eindruck dadurch, dass sich die Erde und die Sonne relativ zueinander bewegen. Wir gehen neuzeitlich-kopernikanisch davon aus, dass die Erde sich um die Sonne dreht und nicht umgekehrt, weil ansonsten beispielsweise die Sterne – je weiter desto schneller – kollektiv um die Erde rotieren müssten und das für entfernte Sterne auch noch mit Überlichtgeschwindigkeit. Trotzdem bleibt es beim Sonnenauf- und -untergang.
Was schon eher Kopfzerbrechen bereiten könnte, ist die Tatsache, dass wir die Sonne beim Auf- und Untergang nie da sehen, wo sie „in Wirklichkeit“ oder „geometrisch“ ist. Denn durch die Brechung des Lichts an der dichten Atmosphäre, durch die es in dieser Konstellation hindurch muss, wird das Sonnenbild optisch angehoben und zwar etwa um einen Winkel, der dem Sonnendurchmesser entspricht (etwa 0,5 Grad). Wenn die Sonne beim Untergang den Horizont berührt, ist sie also „in Wirklichkeit“ schon untergegangen.
Diesen Gedanken könnte man philosophisch oder wie auch immer weiter vertiefen in Richtung auf die Frage, ob man denn ganz genau genommen (mit vielen Stellen hinter dem Komma) überhaupt je etwas dort sieht, wo es ist. Denn Lichtbrechung – und sei sie sie noch so klein – ist immer vorhanden, wenn das Sonnenlicht durch ein Medium, also etwa durch die Luft geht. Überlegungen, die in diese Richtung laufen, kommen kaum zu einem befriedigenden Ergebnis. Man könnte auch noch hinzufügen, dass wegen der Endlichkeit der Lichtgeschwindigkeit die Gegenstände stets an der Stelle gesehen werden, an der das Licht abgeschickt wurde, das uns im Augenblick der Wahrnehmung erreicht.
Also lassen wir es und erfreuen uns am Abbild der Sonne – in diesem Fall an dem Foto – die hier hinter dem Geäst von Bäumen untergeht. Das Sonnenlicht hat beim Durchgang durch die Atmosphäre und den zahlreichen Streuvorgängen mit der Luft und den darin enthaltenen Aerosolen so viel an Farben und Intensität eingebüßt, dass die Sonne einerseits nicht mehr in allen Farben – also weiß leuchtet – sondern hauptsächlich in gelben und roten Farbtönen (er)scheint, und dass man andererseits bedenkenlos in die Sonne hineinblicken und beobachten kann, wie schnell sie absinkt. Wenn sie den Horizont berührt dauert es gerade einmal 2 Minuten, bis der letzte Rest ihres Rands verschwindet. Und wenn man Glück hat, viel Glück, dann kann man auch noch erleben, dass sie sich mit einem grünen Blitz verabschiedet.
„Worum geht es? Durch den kopernikanischen Schock wird uns demonstriert, daß wir die Welt nicht sehen, wie sie ist, sondern daß wir ihre „Wirklichkeit“ gegen den Eindruck der Sinne denkend vorstellen müssen, um zu „begreifen“, was mit ihr der Fall ist. Da liegt das Dilemma: wenn die Sonne aufgeht, geht nicht die Sonne auf. Was die Augen sehen und was der astrophysisch informierte Verstand vorstellt, kann nicht mehr miteinander zur Deckung kommen. Die Erde wälzt sich im leeren Raum um sich selbst nach vorn, wobei der irreführende Eindruck entsteht, wir sähen die Sonne aufgehen. Solange das Universum besteht, gab es noch keinen Sonnenaufgang, sondern nur sture Erdumdrehungen, und dieser Befund wird nicht tröstlicher dadurch, daß wir aufgrund radioastronomischer und anderer Messungen zu der Vorstellung gezwungen sind, daß es vor einem Zeitpunkt t(x) weder die Sonne noch die Erde noch Augen gegeben hat, um deren Konstellationen zu sehen. Dann wären nicht nur die Sonnenaufgänge, sondern auch die Voraussetzungen des Scheins von Sonnenaufgängen in einem kosmischen Noch-Nicht verschwunden. Der augenscheinliche Sonnenaufgang verliert sich in einer mehrfachen Nichtigkeit, sobald wir den ptolemäischen „Schein“ zugunsten kopernikanisch organisierter Vorstellungen von „Wirklichkeit“ aufgeben. Radikaler als jedes metaphysische Vorstellen von „Wesenswelten“ dementiert das moderne physikalische Vorstellen der Körperwelt den ‚Schein der Sinne‘.“*
*Sloterdijk, Peter: Kopernikanische Mobilmachung und ptolemäische Abrüstung. Frankfurt a M 1987.
Optische Täuschungen gibt es nicht nur als raffiniert hergestellte künstliche Objekte, sondern können in zahlreichen Alltagssituationen beobachtet und mit einfachen Argumenten der geometrischen Optik beschrieben werden. Auch wenn das Wort „Täuschung“ meist negativ konnotiert ist, sollte nicht übersehen werden, dass wir in vielen Bereichen der Wahrnehmung, Beschreibung und Erklärung der Welt von optischen Täuschungen profitieren und sie gar nicht als solche ansehen. Dass wir uns auf dieser Gratwanderung zwischen Schein und Sein in extremen oder seltenen Situationen zuweilen genarrt und getäuscht sehen, sollte als unvermeidlicher Tribut an die positiven Aspekte der optischen Täuschung in Kauf genommen werden. Ganz abgesehen davon sind – wie in diesem Beitrag gezeigt werden sollte – viele dieser Täuschungen lustig, faszinierend und die physikalische Intuition herausfordernd. Überdies können sie eine Bereicherung für den Physikunterricht darstellen.
Täuschungen waren auch schon vor dieser Serie Gegenstand dieses Blogs, ohne dass mir bewusst wurde, dass immer wieder neue hinzukommen würden. Einige dieser Beiträge seien hier nocheinmal zusammengestellt:
Schlichting, H. Joachim. Naturwissenschaften im Unterricht Physik 159/160 (2017) S. 74 – 75
„In der Hitze flimmerte die Luft über dem graublauen Asphalt, in genügend großer Entfernung wurde das Band zu einem Spiegel, die Materie verflüssigte sich zu einem See, in dem sich die Karosserien und Bäume spiegelten. Er schob dieses Feld, wo Urbild und Abbild auseinanderflossen, vor sich her, und ihm war, als sei die schimmernde Fläche mit der Mitte seines Körpers verbunden“ (Bornholm, Nicolaus. America oder Der Frühling der Dinge Frankfurt 1980). Weiterlesen
Frage: Wo und wie entstehen diese farbigen Netzwerke?
__________________________________________________________________________________________.
Antwort: Der Anblick des Swimmingpools erscheint auf des ersten Blick so, als habe man es hier mit einer ungewöhnlichen Topologie des Bodens zu tun. Der Boden des Pools sieht am Rande relativ flach aus und scheint zum Vordergrund hin in die Tiefe zu stürzen. Man ahnt vielleicht, dass es sich hier nicht um reale Deformationen handelt – welchen Sinn sollten sie auch haben? – sondern um eine optische Täuschung.
Trotz der Auffälligkeit des Phänomens wird es kaum als solches wahrgenommen. Dafür gibt es gute Gründe: Neben der typischen Blindheit für das Spektakuläre im Alltäglichen, wird man einen Swimmingpool normalerweise nicht durch eingehende Betrachtung, sondern durch Schwimmen oder Planschen in Beschlag nehmen wollen. Hinzu kommt, dass die damit einhergehende Zerstörung der glatten Wasseroberfläche die Sichtbarkeit des Phänomens stark einschränkt.
Daher ist es auch hier wie so oft bei ungewöhnlichen Ansichten des Alltäglichen, dass es sich erst aus einer nicht alltäglichen Perspektive erschließt: Entweder man geht ins Wasser und blickt (ruhig schwimmend oder stehend) flach über die Wasseroberfläche ins Wasser oder – wenn man nicht nass werden möchte – kann man den Blick auch flach auf dem Bauch liegend vom Rand des Beckens her tun. Der Aufwand lohnt sich allemal. Zwar sind für jemanden der weiß, was er sehen will, die Deformationen auch aus einem normalen Blickwinkel andeutungsweise erkennbar. Ungewöhnlich wird der Anblick aber erst aus der ungewöhnlichen Perspektive.
Wie kommt es zu diesen optischen Deformationen?
Blickt man in ein Gefäß mit Wasser so stellt man manchmal – erstaunt oder nicht – fest, dass der Boden angehoben erscheint. Das Licht vom Boden des Gefäßes wird beim Übergang vom optisch dichteren ins optisch dünnere Medium vom Einfallslot weg gebrochen, so dass der Beobachter den Boden höher sieht, als er in „Wirklichkeit“ ist. Bei einer Tasse, in die man eine Münze legt, kann man dieses Phänomen eindrucksvoll demonstrieren (mittleres Foto). Blickt man so in die Tasse, dass man die Münze gerade nicht sieht und behält diesen Blickwinkel bei, so gerät sie plötzlich in den Blick, wenn die Tasse mit Wasser gefüllt wird. Der Boden wird samt der Münze optisch angehoben.
Die optische Hebung kennt man. Was man jedoch kaum kennt, ist die Tatsache, dass der optisch gehobene Gegenstand im allgemeinen nicht senkrecht über dem realen Gegenstand zu sehen ist, sondern je nach Blickrichtung auch mehr oder weniger stark horizontal verschoben erscheint. Wie der Blick ins Schwimmbecken zeigt, variieren diese Verschiebungen mit dem Blickwinkel.
Bei der Tasse ist man auf einen sehr kleinen Sehwinkel aus einer ganz bestimmten Höhe beschränkt. Bei größeren Wasserkörpern wie etwa einem Swimmingpool überblickt man gleichzeitig Gebiete aus stark unterschiedlichen Blickwinkeln insbesondere dann, wenn man sich der Wasseroberfläche stark annähert. Die Variation des Blickwinkels geht mit einer kontinuierlichen Variation der Stärke der Hebung einher und bringt die Deformationen hervor, die im obigen Foto zu sehen sind.
Die Deformationen sind außerdem deshalb so gut zu erkennen, weil Boden und Wände des Beckens mit Fließen belegt sind, die wie „Millimeterpapier“ selbst kleine Verzerrungen zu erkennen geben.
Solche brechungsbedingten Deformationen treten natürlich auch bei anderen Gewässern oder Teichen auf. Weil bei ihnen jedoch meist das rechteckige Bezugssystem fehlt, wird man brechungsbedingte Abweichungen von der unbekannten und unverzerrten „wahren“ Topologie des Bodens kaum feststellen können.
Vielleicht ist es der einen oder dem anderen schon einmal aufgefallen, dass unser Tagesgestirn bei Annäherung an den Horizont außer Form gerät. Ich meine noch nicht einmal die durch Luftspiegelung bedingten Verzerrungen, sondern den schlichten Übergang von einer perfekten Kreisscheibe zu einer ellipsenförmigen Abflachung. Man sieht es oft erst dann, wenn man darauf aufmerksam gemacht wird oder – wie ich es hier ganz drastisch vorführe – dasselbe Sonnenbild um 90° gedreht daneben stellt. Weiterlesen
Am Swimmingpool gerät man manchmal auch vorstellungsmäßig ins Schwimmen. Beim Reinigen des Poolbodens wird mit einem langen Stab eine Art Staubsauer über den Boden geführt. Wenn man diesen Vorgang von der Seite her beobachtet, kann man einige erstaunliche Entdeckungen machen. Zunächst wird man vielleicht einmal mehr vom scheinbaren Knick des schräg in das Wasser tauchenden Stabs irritiert. Man kennt zwar das Phänomen im Kleinen vom scheinbar abgeknickten Strohhalm im Limonadenglas. Aber wie viel eindrucksvoller ist der Vorgang, wenn man ihn im Großen erlebt. Weiterlesen
Ein Sonnenaufgang ist schon lange nicht mehr das, was er sprachlich vorgibt zu sein. Da geht nichts auf, was vorher zu war. Da entsteht nichts, was später wieder verschwindet. Sowohl im geozentrischen als auch im heliozentrischen Weltbild entsteht dieser Eindruck dadurch, dass sich die Erde und die Sonne relativ zueinander bewegen. Wir gehen neuzeitlich-kopernikanisch davon aus, dass die Erde sich um die Sonne dreht und nicht umgekehrt, weil ansonsten beispielsweise die Sterne – je weiter desto schneller – kollektiv um die Erde rotieren müssten und das für entfernte Sterne auch noch mit Überlichtgeschwindigkeit. Trotzdem bleibt es beim Sonnenauf- und -untergang. Weiterlesen
Ein Swimmingpool ist für zahlreiche Überraschungen gut. Sei es dass der in Wirklichkeit ebene Boden wie eine Berglandschaft aussieht, Kräuselungen auf der Wasseroberfläche ein Farbenspiel auf dem Boden entfachen oder der Stab des Reinigungsgeräts an der Grenzschicht zwischen Wasser und Luft nicht nur abgeknickt, sondern auch leicht gekrümmt erscheint. Weiterlesen
Schlichting, H. Joachim. Darmstadt: Primus Verlag 2012
„Hans Joachim Schlichting ist etwas selten Schönes gelungen. Alltagsgegebenheiten aus dem Dickicht des gewohnt alltäglichen Blicks herauszuholen, eindrucksvoll aufs Bild zu bannen und dann auch noch mit physikalischen Augen zu sehen oder gar erst zu erkennen ist schon schwierig genug. Solche Phänomene dann auch noch mit einfachen Worten zu beschreiben und zu erklären gelingt derart selten, dass dieses Buch sich deutlich aus der populärwissenschaftlichen Literatur über Phänomene in Physik und Natur heraushebt. Hier trafen das außergewöhnliche Talent eines passionierten Amateurfotografen mit dem in vielen Jahren angesammelten Wissen eines Fachmanns der Physikdidaktik zusammen. Weiterlesen