//
Artikel Archiv

Lichtbrechung

Diese Schlagwort ist 16 Beiträgen zugeordnet

Der blaue Himmel – vieltausendmal

Am Morgen als die Sonne bereits strahlend ihre zu dieser Jahreszeit kurze Bahn zieht, entdecke ich auf einem Feld mit Gründüngerpflanzen den blauen Himmel vieltausendmal in einem Meer von Wassertropfen reflektiert. Die Tropfen haben sich in der Nacht auf den Blättern gebildet, nachdem die Temperatur den Taupunkt unterschritt und der überschüssige Wasserdampf kondensierte.
Jeder Tropfen ist mit einem hellen Punkt markiert, die auf der Oberfläche spiegelnd reflektierte Sonne, so als müsste sie überall ihr Signum setzen. Außerdem wirft jeder Tropfen trotz seiner Lichtdurchlässigkeit einen Schatten, in dem das ausgeblendete Licht zu einem Brennfleck gebündelt ausdruckstark zu Geltung kommt.
Im rechten Bereich des Fotos sind zahlreiche unscharf fotografierte Tropfen zu sehen. Aber auch diese zeigen ein interessantes Unschärfephänomen: Die Sonnenreflexe mutieren zu Ringen. Solche meist ungewünschten Unschärfen werden oft zu künstlerischen Zwecken bewusst herbeigeführt und hören auf den aus dem Japanischen stammenden Namen: bokeh.

Werbung

Geheimnisvolle Gewächse

An dieser schrägen Wand sprießen Gewächse besonderer Art in allen Größen. Die inneren Mycele erinnern an sich ausbreitende Pilze, nur dass hier alles mit einer zarten Haut bedeckt zu sein scheint. Wenn es keine Pflanzen, Pilze oder Tiere sind, die uns hier durch ihre schiere Zahl und Formenvielfalt beeindrucken, fragt sich, worum es sich wirklich handelt.
Diese Gestalten sah ich auf einer mit Wassertropfen besetzten Glasscheibe, in der sich ein kahler Baum spiegelt.

Tee und Licht

Ich habe fast gleichzeitig eine gläserne Teetasse und eine Taschenlampe geschenkt bekommen. Und als die beiden in der nächsten Teepause zum ersten Mal aufeinandertrafen, gab es Tee und Licht (Teelicht ist leider schon als Begriff besetzt und weckt nur falsche Assoziationen).

Teepause

In der Pause, während ich

vor der Flamme wartete,
fiel mir plötzlich ein,

etwas Endgültigem zu entraten;
das Wasser begann gerade

zu kochen, der Kessel heult
gleichmäßig wie eine Siren.

Aber als ich den Tee aufgoß,
waren schon die Möglichkeiten,

ungeheuer, wieder vergessen;
im quirlenden Dampf verfing

sich mein Blick, bis er verschwand,
und ich erkannte noch, wie präzis

der Sand durch die Enge rann.
*



* Henning Ziebritzki (*1961)


Etruskische Vase – Sonnenuntergang

In der Absicht, den grünen Strahl zu erwischen, fotografiere ich den Sonnenuntergang. Die Sonne nähert sich dem Horizont und ist kurz davor das Wasser zu berühren. Doch kurz vorher fährt sie noch einen Sockel aus, damit sie nicht allzu sehr von dem zischenden Wasser eingetrübt wird…. 😉
Soweit eine lebensweltliche Interpretation des Gesehenen. Physikalisch sieht es etwas anders aus. Wir haben es mit der Etruskischen Vase zu tun. Zwar ist auch diese Bezeichnung äußerst lebensweltlich geprägt, weil der Anblick Jules Verne (1828 – 1905) zufolge an eine Vase erinnert, sogar an eine etruskische. Das ist zwar schwer nachzuvollziehen, weil etruskische Vasen doch etwas anders aussehen, aber der Terminus hat sich eingebürgert und zumindest jeder „atmosphärische Optiker“ weiß, was gemeint ist.
In Wirklichkeit handelt es sich um eine untere Luftspiegelung. Die Sonne wird beim Untergang durch eine Luftschicht gesehen, deren Temperatur direkt über dem vergleichsweise warmen Wasser höher ist als die kühlere Luft darüber. Dadurch wird das von der Sonne auf diese wärmere Luftschicht fallende Licht so gebrochen, dass es nach oben abgelenkt wird. Wir sehen also die Sonne daher nicht nur auf direktem Wege, auf dem das Licht nur wenig abgelenkt wird, sondern gleichzeitig den unteren Teil durch die Ablenkung in der warmen Luftschicht. Das ist ganz ähnlich wie bei einer Luftspiegelung über dem heißen Asphalt.
In dieser Jahreszeit, in der das Meerwasser noch relativ warm ist, die Luft aber bereits sehr niedrige Temperaturen annehmen kann, ist die Etruskische Vase oder die Omega-Sonne, wie sie aufgrund der Ähnlichkeit mit dem griechischen Buchstaben Omega (Ω) auch genannt wird, vergleichsweise häufig zu beobachten.

Hieroglyphen aus Kaustiken

Auf einer Exkursion besuchten wir eine Ausgrabungsstätte mit den Überresten einer vergangenen Kultur. Es waren flache Holzkästen mit einem gläsernen Deckel aufgestellt, durch den hindurch man einen erklärenden Text lesen konnte. In einigen Kästen waren die Texte bereits so vergilbt, dass man den Schwierigkeiten hatte ihm bedeutungsvolle Informationen zu entnehmen. Und in einem Kasten war bereits der Text ganz verschwunden – es sei denn, man macht sich daran, die stattdessen auf dem nackten Boden des Kastens abgebildeten Hieroglyphen zu entziffern (siehe Foto).
Was immer sie aussagen mögen, ihr Ursprung ist jedenfalls ein ganz natürlicher. Unter der Scheibe hingen einige Kondenswassertropfen, denen die heiße Sonne gerade den Garaus machte. Das heizte den Kasten auf, sodass die Tropfen allmählich verdampften. Sicherlich würden sie in der nächsten Nacht in anderer Konstellation zurückkommen, wenn sich ein Teil des Wasserdampfes erneut an der abgekühlten Scheibe verflüssigte und vielleicht andere Botschaften darstellte.
Aber die Sonne macht noch etwas anderes. Sie bildete die Tropfen auf dem Boden des Kastens ab. Da diese optisch so etwas wie deformierte Linsen darstellen, bricht sich in ihnen das Licht mit der Folge, dass es den Krümmungen der Tropfen entsprechend abgelenkt wird. Auf diese Weise wird Licht an bestimmten Stellen gesammelt und macht sich als Brennflecken, sogenannten Kaustiken, bemerkbar. Zwangsläufig fehlt dann an anderen Stellen Licht und es entstehen lichtfreie Stellen – Schatten.
Mir ist es also nur gelungen diese Hieroglyphen physikalisch zu entziffern und mich ihrer Naturschönheit zu erfreuen.

Lichtspiele am Abend

ABEND
Einsam hinterm letzten Haus
geht die rote Sonne schlafen,
und in ernste Schlußoktaven
klingt des Tages Jubel aus.

Lose Lichter haschen spät
noch sich auf den Dächerkanten,
wenn die Nacht schon Diamanten
in die blauen Fernen sät.
*


* Rainer Maria Rilke.

Natürliche Lichtmalerei

Zu erkennen ist der Rand eines Blatts. Dass es sich um ein Teichrosenblatt handelt, ist schon etwas schwieriger auszumachen. Und dass die skurrilen geschwungenen Formen der Schatten eben dieses Blatts ist, der durch das Sonnenlicht auf dem flachen hellen Boden eines Beckens geworfen wird, scheint den Regeln der geometrischen Schattenbildung sogar zu widersprechen.
Und doch ist es so. Wer immer sich die schönen Blüten der Teichrose anschaut, sollte auch mal einen Blick auf die Blätter richten. Wenn dann auch noch ein flacher Teichboden vorhanden ist und die Sonne scheint, hat sie oder er eine reale Chance, dieses skurrile aber naturschöne Bild zu genießen.
Der physikalische Hintergrund dieses Phänomens wurde in einem früheren Beitrag beschrieben.

Wo sieht man die Sonne?

Ein Sonnenaufgang ist schon lange nicht mehr das, was er sprachlich vorgibt zu sein. Da geht nichts auf, was vorher zu war. Da entsteht nichts, was später wieder verschwindet. Sowohl im geozentrischen als auch im heliozentrischen Weltbild entsteht dieser Eindruck dadurch, dass sich die Erde und die Sonne relativ zueinander bewegen. Wir gehen neuzeitlich-kopernikanisch davon aus, dass die Erde sich um die Sonne dreht und nicht umgekehrt, weil ansonsten beispielsweise die Sterne – je weiter desto schneller – kollektiv um die Erde rotieren müssten und das für entfernte Sterne auch noch mit Überlichtgeschwindigkeit. Trotzdem bleibt es beim Sonnenauf- und -untergang.
Was schon eher Kopfzerbrechen bereiten könnte, ist die Tatsache, dass wir die Sonne beim Auf- und Untergang nie da sehen, wo sie „in Wirklichkeit“ oder „geometrisch“ ist. Denn durch die Brechung des Lichts an der dichten Atmosphäre, durch die es in dieser Konstellation hindurch muss, wird das Sonnenbild optisch angehoben und zwar etwa um einen Winkel, der dem Sonnendurchmesser entspricht (etwa 0,5 Grad). Wenn die Sonne beim Untergang den Horizont berührt, ist sie also „in Wirklichkeit“ schon untergegangen.
Diesen Gedanken könnte man philosophisch oder wie auch immer weiter vertiefen in Richtung auf die Frage, ob man denn ganz genau genommen (mit vielen Stellen hinter dem Komma) überhaupt je etwas dort sieht, wo es ist. Denn Lichtbrechung – und sei sie sie noch so klein – ist immer vorhanden, wenn das Sonnenlicht durch ein Medium, also etwa durch die Luft geht. Überlegungen, die in diese Richtung laufen, kommen kaum zu einem befriedigenden Ergebnis. Man könnte auch noch hinzufügen, dass wegen der Endlichkeit der Lichtgeschwindigkeit die Gegenstände stets an der Stelle gesehen werden, an der das Licht abgeschickt wurde, das uns im Augenblick der Wahrnehmung erreicht.
Also lassen wir es und erfreuen uns am Abbild der Sonne – in diesem Fall an dem Foto – die hier hinter dem Geäst von Bäumen untergeht. Das Sonnenlicht hat beim Durchgang durch die Atmosphäre und den zahlreichen Streuvorgängen mit der Luft und den darin enthaltenen Aerosolen so viel an Farben und Intensität eingebüßt, dass die Sonne einerseits nicht mehr in allen Farben – also weiß leuchtet – sondern hauptsächlich in gelben und roten Farbtönen (er)scheint, und dass man andererseits bedenkenlos in die Sonne hineinblicken und beobachten kann, wie schnell sie absinkt. Wenn sie den Horizont berührt dauert es gerade einmal 2 Minuten, bis der letzte Rest ihres Rands verschwindet. Und wenn man Glück hat, viel Glück, dann kann man auch noch erleben, dass sie sich mit einem grünen Blitz verabschiedet.
„Worum geht es? Durch den kopernikanischen Schock wird uns demonstriert, daß wir die Welt nicht sehen, wie sie ist, sondern daß wir ihre „Wirklichkeit“ gegen den Eindruck der Sinne denkend vorstellen müssen, um zu „begreifen“, was mit ihr der Fall ist. Da liegt das Dilemma: wenn die Sonne aufgeht, geht nicht die Sonne auf. Was die Augen sehen und was der astrophysisch informierte Verstand vorstellt, kann nicht mehr miteinander zur Deckung kommen. Die Erde wälzt sich im leeren Raum um sich selbst nach vorn, wobei der irreführende Eindruck entsteht, wir sähen die Sonne aufgehen. Solange das Universum besteht, gab es noch keinen Sonnenaufgang, sondern nur sture Erdumdrehungen, und dieser Befund wird nicht tröstlicher dadurch, daß wir aufgrund radioastronomischer und anderer Messungen zu der Vorstellung gezwungen sind, daß es vor einem Zeitpunkt t(x) weder die Sonne noch die Erde noch Augen gegeben hat, um deren Konstellationen zu sehen. Dann wären nicht nur die Sonnenaufgänge, sondern auch die Voraussetzungen des Scheins von Sonnenaufgängen in einem kosmischen Noch-Nicht verschwunden. Der augenscheinliche Sonnenaufgang verliert sich in einer mehrfachen Nichtigkeit, sobald wir den ptolemäischen „Schein“ zugunsten kopernikanisch organisierter Vorstellungen von „Wirklichkeit“ aufgeben. Radikaler als jedes metaphysische Vorstellen von „Wesenswelten“ dementiert das moderne physikalische Vorstellen der Körperwelt den ‚Schein der Sinne‘.“*

*Sloterdijk, Peter: Kopernikanische Mobilmachung und ptolemäische Abrüstung. Frankfurt a M 1987.

Kratzer um die Sonne

Links: Quasikonzentrische Ringe um den Sonnenreflex auf einer Karosserie. Rechts: Vergrößerter Ausschnitt

Es dringt in jede Spalte,
zeichnet alle Formen
– auch die unsichtbaren

Andrzej Stasiuk (*1960)

H. Joachim Schlichting. Spektrum der Wissenschaft 3 (2022), S. 74 – 75

Feinste Kratzer auf glatten Oberflächen sind normalerweise unsichtbar. Unter der Sonne treten sie allerdings abschnittsweise als dünne, manchmal bunt schillernde Streifen hervor, die sich scheinbar kreisrund um das Bild der Lichtquelle herum gruppieren.

Die meisten Menschen würden wohl behaupten, ein frisch lackiertes Auto glänze am schönsten. Wenn man hingegen auf einen speziellen physikalischen Effekt aus ist, darf die Autokarosserie nicht mehr ganz fabrikneu sein. Dann bildet sich an klaren Tagen um das reflektierte Bild der Sonne herum ein konzentrisch aussehendes System von mehr oder weniger kurzen Lichtstreifen. Sie schillern überdies häufig in verschiedenen Spektralfarben (siehe »Leuchtspuren«). Besonders lange genutzte Fahrzeuge ergeben die schönsten Effekte. Denn die Ringe werden letztlich durch Gebrauchsspuren hervorgerufen, die im Lauf der Zeit durch mechanische Einwirkungen auf den Lack entstehen. Daran sind die rotierenden Bürsten beim Waschen oder das manuelle Säubern ebenso beteiligt wie Schmutzteilchen, die über den Lack hinweg streichen und dabei mikroskopisch kleine Rillen hinterlassen.

Auf den ersten Blick könnte man vermuten, es wären kreisförmige Streifen für das Phänomen verantwortlich, vielleicht durch entsprechende Bewegungen beim Polieren in diesem Bereich. Doch die leuchtenden Ringe bewegen sich mit dem Reflex der Lichtquelle mit und treten an fast jeder beliebigen Stelle in Erscheinung. Es muss eine andere Ursache geben.

Schaut man sich die hellen Striche genauer an, so erkennt man: Sie sind meist gar nicht gekrümmt, sondern es handelt sich um geradlinige Riefen, die sich wie Tangentenstücke an imaginäre Kreise um den Sonnenreflex herum gruppieren. Offenbar sieht man nur jene Abschnitte der Kratzer, die gerade so orientiert sind, dass sie das Licht ins Auge reflektieren. Auf die Weise entsteht insgesamt scheinbar eine kreisförmige Struktur. Unser visuelles System verstärkt den Eindruck, denn es tendiert dazu, Reize möglichst ausgewogen und symmetrisch wahrzunehmen. Denn wegen der Zufallsverteilung der Rillen kann es in Wirklichkeit keine aus tangentialen Stücken zusammengesetzten geschlossenen Kreise geben.

Wie kommt es zu dem Phänomen? Auf einer perfekt glatten Oberfläche wäre das Spiegelbild der Sonne genau auf einer Fläche zu sehen – und nur dort –, von der die einzelnen Punkte der Sonnenscheibe nach dem Reflexionsgesetz ins Auge geworfen werden. Nun sehen wir aber viele Stellen glänzen, die vom Spiegelbild der Sonne ein Stück entfernt sind. Darum können die reflektierenden Flächenelemente nicht in derselben Ebene liegen wie die gespiegelte Sonne. Sie müssen vielmehr zu ihr hin geneigt sein und zwar umso stärker, je weiter weg sie liegen.

Die Erklärung liegt im u-förmigen Querschnitt der Kratzer. Deswegen existiert ein ganzes Spektrum unterschiedlich geneigter Flächenelemente, und jedes leuchtet an den Stellen passender Winkel auf. Da die Sonne eine ausgedehnte Lichtquelle ist, erhellt sie nicht nur einen Punkt, sondern die Reflexion erstreckt sich noch über ein kleines Stück zu dessen Seiten. Die Länge der strahlenden Abschnitte hängt mit der scheinbaren Größe der Sonne zusammen. Außerdem sind die Reflexe an einem Kratzer auch deshalb nicht auf einen Punkt beschränkt, weil die Innenseiten unregelmäßig strukturiert sind und an mehreren Stellen passende Bedingungen bieten. Aus Symmetriegründen gelten die Überlegungen für alle tangential um das Spiegelbild der Sonne herum orientierten Rillen. Mit zunehmendem Abstand vom Zentrum sind immer steilere Neigungen für eine Reflexion zum Betrachter erforderlich. Da diese seltener vorkommen, nehmen die Häufigkeit und die Helligkeit leuchtender Kratzerabschnitte nach außen hin ab.

Obwohl die funkelnden Stellen einen Eindruck davon vermitteln, wie stark der Autolack vom Alltag gezeichnet ist, muss man sich vor Augen führen, dass die tatsächliche Zahl und Länge der winzigen Schrammen noch wesentlich größer sind. Eine Computersimulation veranschaulicht das: Man kann für eine Zufallsverteilung unterschiedlicher Kratzer, die im diffusen Licht unsichtbar sind, die Abschnitte visualisieren, die mit einer senkrecht darüber angebrachten Punktlichtquelle zu Tage treten. Dann zeichnen die Reflexionen ein ähnliches Muster wie auf einem Autodach und spiegeln doch immer nur einen Bruchteil aller Unebenheiten wider.

Solche strahlenden Ringe lassen sich außerdem beispielsweise als Reflexionen auf Besteck und weiteren intransparenten Objekten erkennen, aber auch beim Blick durch die Kunststofffenster eines Flugzeugs. Diese sind ebenso mechanischen Einwirkungen ausgesetzt. Von den winzigen Spuren sieht man nur etwas, wenn man durch das Fenster hindurch auf eine Lichtquelle blickt. In dem Fall gruppieren sich die hellen Abschnitte nicht um das Spiegelbild, sondern um das Original der Lichtquelle (siehe »Spektrum« August 2019, S. 52). Daher unterscheiden sich die physikalischen Verhältnisse insofern, als das Licht hier nicht an den Kratzern reflektiert, sondern an ihnen gebrochen wird.

Bei genauerem Hinschauen glitzern viele Rillen bunt. Offenbar sind einige der feinen Unregelmäßigkeiten von der Größenordnung der Wellenlänge des Lichts. Dann kommt es zur Beugung des Lichts, die das einfallende weiße Licht in die Bestandteile seines Spektrums zerlegt. Die Strukturen wirken wie feine Spalte, entlang derer die auftreffende Strahlungsfront Elementarwellen in alle möglichen Richtungen aussendet. Überlagern sie sich im Auge oder auf dem Chip der Kamera, so werden entsprechend den jeweiligen Wegunterschieden bestimmte Wellenlängen verstärkt oder abgeschwächt. Je nach Beobachtungsposition schimmern die Schrammen oft so intensiv farbig, dass sie viel breiter wirken, als sie in Wirklichkeit sind.

Metamorphose en miniature

Die Bäume trieften nur so vom letzten Regen. Doch das Geräusch der fallenden Tropfen, die sich aus den letzten feinen Wasserströmen speisten, ließ allmählich nach. Einige Tropfen blieben schließlich noch hängen. In der Nacht kühlte es sich auf etwas unter den Gefrierpunkt ab. Jedenfalls empfing mich der nächste Morgen mit reifüberzuckerten Pflanzen.
Erstaunlicherweise hingen einige Tropfen immer noch an den Zweigen. Aber sie waren gefroren, wie man an den Luftkanälen feststellen konnte, die die Tropfen durchzogen. Es sollte ein sonniger Tag werden und das geschah dann erstaunlicherweise auch. Ich behielt einige „Eistropfen“ im Auge. Weil sie am Ast festgefroren waren, fielen sie nicht herab. Vorerst. Denn die Sonne trat ihren nun schon etwas größer gewordenen Bogen mit ganzer Strahlkraft an. Das blieb nicht ohne Wirkung auf die „Eistropfen“. Es tat sich was.
Ich sah es zuerst daran, dass die inneren Luftkanäle schwanden. Die Luft löste sich in dem Maße im Wasser, wie es aus dem Eis hervorging. Schaut man genauer hin, so sieht man auf dem Foto, dass der Tropfen im oberen Bereich noch gefroren ist und Reste der Luftkanäle aufweist, während sich im unteren Bereich ein transparentes Säckchen mit flüssigem Wasser füllt und eine Trennlinie zwischen fest und flüssig sich allmählich nach oben bewegt.
Alles ging Hand in Hand bis der ursprüngliche Zustand vom Vortag wieder hergestellt war.
Eine meist übersehene völlig unwichtige Kleinigkeit. Sicher. Aber auch eine schöne Geschichte, die sich an den Bäumen vieltausendmal abspielt, ohne dass jemand Notiz davon nimmt. Ich mag diese Miniveranstaltungen im Verborgenen!

Eine Vereinigung von Glorie und Heiligenschein

Dass mein Kopfschatten auf der taufeuchten Wiese kurz nach Sonnenaufgang von einem Heiligenschein umgeben ist, bin ich auf meinen Wanderungen in der Krummhörn gewohnt. Jedenfalls, wenn die Sonne scheint. Heiligenscheine ohne diesen natürlichen Hintergrund habe ich noch nie gesehen, weil sie wohl nur echten Heiligen vorbehalten sind und die machen sich in unserer Zeit ziemlich rar.
In den Bergen oder vom Flugzeug aus erlebt man noch eine andere Art natürlichen Kopfschmucks, die Glorie, die auf einer Nebelwand oder auf Wolkenbänken den eigenen Kopfschatten umgibt. Erst kürzlich konnte ich eine solche Glorie zeigen. Heute hatte ich nun das seltene Glück, mit dem Aufgang der Sonne nicht nur meinen Heiligenschein um den Kopfschatten auf dem feuchten Gras zum Begleiter zu haben, sondern zusätzlich (welch Verschwendung!) eine Glorie, die sich in dem leichten und als solchen in der Entfernung kaum zu erkennenden Nebel entfaltete. Wegen der Entfernung dieser unverdienten Insignien gingen beide ineinander über und waren rein visuell nicht zu trennen. Trotzdem ist ihr Ursprung verschieden. Während der Heiligenschein vor allem durch die Rückstrahlung des durch die Wassertröpfchen auf die Grashalme fokussierten Lichts hervorgerufen wird, entsteht die Glorie durch die gleichzeitige Beugung und Rückstrahlung des Sonnenlichts in den winzigen Nebeltröpfchen. Durch die Beugung wird das weiße Licht in Spektralfarben zerlegt, die sich ringförmig um den Schattenkopf legen. Im vorliegenden Fall dominieren die langwelligen Gelb- und Rottöne.
Je mehr sich mir infolge der zunehmenden Sonnenhöhe der Kopfschatten näherte, desto mehr verloren die Farbringe an Brillanz um schließlich ganz zu verschwinden. Dafür war zum einen die Zunahme der Sonnenintensität verantwortlich, die dem Nebel allmählich den Garaus machte, zum anderen bedingte der steilere Einfall des Sonnenlichts einen kürzeren Weg durch den verbleibenden Nebel, sodass immer weniger Wassertröpfchen beteiligt waren. Es dauerte dann auch nicht mehr lange, bis der Nebel und damit auch die Glorie ganz verschwunden waren und einen schönen, sonnigen Tag hinterließen. Leider hatte ich keinen guten Fotoapparat dabei, sondern nur ein Handy. Die Qualität des Fotos ist also nicht so gut, wie es hätte sein können.

Eine Trinkflasche mit Regenbogenambitionen

Eine transparente Plastiktrinkflasche steht auf der Fensterbank im Sonnenlicht. Dieses fällt etwas nach links verschoben von vorn oben ein. Abgesehen von einer intensiven Lichtstreuung im oberen Bereich der Flasche, die so intensiv ist, dass die Details überstrahlt werden, fallen einige spektralfarbene Streifen auf.

Zum einen fällt ein regenbogenfarbiger Teilkreis auf ein Blatt weißes Papier, das ich der besseren Sichtbarkeit vor mir auf den Schreibtisch gelegt habe. Er entsteht dadurch, dass das Licht beim schrägen Auftreffen auf die Wasseroberfläche in der Flasche gebrochen wird. Die gerundete Wasserschicht wirkt gewissermaßen wie ein Prisma, durch das das weiße Licht zum Einfallslot hin gebrochen wird und zwar zunächst beim Auftreffen auf das Wasser und anschließend beim Verlassen des Wassers. Weil es dabei auf eine kreisrunde Front trifft wird es nicht nur nach unten, sondern auch zur Seite abgelenkt. Dadurch ergibt sich in der Projektion auf dem Tisch, ein runder Lichtstreifen, der länger ist als der Querschnitt der Flasche.

Da der Brechungsindex nicht nur vom brechenden Material, dem Wasser, abhängt, sondern auch von der Wellenlänge des Lichts, wird das Licht unterschiedlicher Wellenlängen unterschiedlich stark gebrochen: kurwelliges Licht (vor allem Blau) wird stärker (zum Einfallslot hin) gebrochen als langwelliges (vor allem Rot). Daher liegt der rote Streifen außen und der blaue innen. Ganz sauber gelingt die Aufspaltung in Farben nicht, weil die Kunststoffwand der Flasche nicht ganz homogen ist.

Zum anderen beobachtet man zwei spektralfarbene Streifen auf dem unteren Teil des Fensterrahmens. Sie kommen dadurch zustande, dass das unterhalb der Wasseroberfläche einfallende Sonnenlicht zunächst gebrochen und dadurch nicht nur zum Einfallslot hin abgelenkt, sondern auch spektral zerlegt wird. Anschließend trifft das sich auf diese Weise verjüngende Lichtbündel auf die Innenwand der Flasche (auf die man blickt), wird dort teilweise reflektiert und schließlich beim Wiederaustritt aus der rückwärtigen Wand der Flasche abermals gebrochen. Dabei tritt wie bei der Entstehung eines Regenbogens in einem Wassertropfen eine deutliche Verstärkung des Lichts auf, so dass zu jeder Seite bei einem bestimmten Winkel ein farbiger Streifen zu sehen ist. Jenseits dieses Winkels kommt kein Licht mehr an. Die im übrigen Bereich gebrochenen farbigen Lichtstrahlen mischen sich wieder zu weißem Licht. Wir haben wir es also hier mit einem regenbogenartigen Phänomen zu tun, das wegen der Zylindergeometrie der Flasche jedoch nur auf eine Ebene beschränkt ist.

Schließlich sieht man innerhalb der Flasche noch so etwas wie ein helles Rechteck. Es kommt dadurch zustande, dass ein Teil des durch die Flasche hindurchstrahlenden Lichts  beim Durchgang durch die Kunststoffwand teilweise an Inhomogenitäten des Materials gestreut und gebrochen wird. Es gelangt auf diesem Wege ins Auge des Betrachters gerät und wird sichtbar.

Das kalt gebliebene Osterfeuer

Auch wenn Osterfeuer wie fast jedes Massenereignis der Umwelt schaden, erinnere ich mich gern an die vergangenen Feuer, in denen man Naturgewalt des Feuers unmittelbar zu spüren bekommt. Das Feuer sorgt durch seine intensive Strahlungsenergie, die bei hoher Temperatur abgegeben wird, dafür dass man freiwillig auf Abstand bleibt. (Was in anderen Bereichen kaum zu erreichen ist – das sage ich aus aktuellem Anlass.) Demgegenüber sind poetische, kulturelle, physikalisch u. Ä. Annäherungen gefahrlos möglich. Sie zeigen dass die Komplexität des Phänomens durchaus mit der abgestrahlten Wärme mithalten kann. Selbst die abgegebenen Gase sind so heiß, dass sie auch dann noch durch einen Funken entzündet werden können, wenn sie die Verbindung zum verbrennenden Holz bereits verloren haben.
Die Osterfeuer sind in diesem genau wie im vorigen Jahr abgesagt. Wenn ich an das Osterfeuer unserer Gemeinde denke, das mit dem liegen gebliebenen Brennmaterial des Vorjahres nunmehr die doppelte Größe erreicht hat, so hoffe ich dass es im nächsten Jahr mit dreifacher Größe, dreifacher Wärme und dreifachem Jubel über die dann hoffentlich überstandene Coronazeit ein positives Lichtzeichen in die Welt senden wird.

Das Foto zeigt den übrig gebliebenen Schornstein einer seit Jahrzehnten aufgegebenen Ziegelei. Obwohl er ziemlich zittrig aussieht und durch die Flammen des Osterfeuers hindurch gesehen den Eindruck erweckt, jeden Moment umzukippen, handelt es sich dabei nur um eine optische Täuschung. Da der Brechungsindex der Luft von der Temperatur abhängt, wird das vom Schornstein ausgehende Licht den chaotischen Bewegungen der unterschiedlich heißen Gasfragmente entsprechend mal in die eine, mal in die andere Richtung abgelenkt. Das vermeintliche Zittern von Sternen (Twinkle, twinkle, little star…) hat die gleiche Ursache.

Verschwimmende Konturen im Schneesturm

Es ist als spielte das Wetter noch einmal seine Möglichkeiten zwischen Schnee, Sonne, Wind und Gewitter noch einmal in alter Vielfalt durch. Jedenfalls war der gestrige Tag von diesen Extremen geprägt. Als der Schnee gegen das Fenster prallend und dann – durch Adhäsions- und Oberflächenkräfte gehalten – gebremst an der Scheibe herab rutschte und sich am Fensterrahmen angekommen zu einem unregelmäßigen kristallenen Gitter staute, kamen Strukturen in den Blick, die man dem Wetter gar nicht zugetraut hätte (siehe Foto). Durch die unregelmäßig benetzte Scheibe wird das Licht diesen Strukturen entsprechend gebrochen und die durchscheinende Baumkulisse erscheint entsprechend kreativ variiert.

Merkwürdige Lichtstreifen in einem winzigen Wasserfall

Auf einer Wanderung entdeckte ich in einem kleinen stürzenden Bach parallel angeordnete hell leuchtende Streifen im Wasser, die auf dem obigen Foto nur sehr unvollkommen wiedergegeben werden. Unser Auge ist eben doch in mancher Hinsicht der überlegenere „Apparat“. Diese Streifen waren just an den Stellen zu sehen, an denen das Wasser über einen kleinen Wasserfall etwa 10 cm „herabstürzten“.
Weiterlesen

Tiefenstruktur einer brennenden Kerze

Vielleicht ist es der einen oder dem anderen schon aufgefallen, dass zu einer brennenden Kerze außer dem Wachskörper plus Docht mehr gehört, als die leuchtende Flamme, der wir das in dieser Zeit so geschätzte sanfte Licht verdanken. Man muss nur die Hand über die Flamme halten, um alsbald festzustellen, dass dies nur in einer beträchtlichen Höhe auszuhalten ist. Demgegenüber sind seitliche Annäherungsversuche weniger problematisch, man gelangt schmerzlos bis dicht an die Flamme heran. Dadurch wird der Eindruck vermittelt, dass sich oberhalb der Flamme so etwas wie ein Hitzeschlauch befindet. Weiterlesen

Photoarchiv