//
Artikel Archiv

Musik

Diese Schlagwort ist 8 Beiträgen zugeordnet

Was ein Häkchen werden will, krümmt sich beizeiten

Eine Beugung ist eine Krümmung. Es gibt viele Arten der Beugung. In diesem Blog wird die Lichtbeugung wohl am häufigsten erwähnt. Sie wird aber unausgesprochen und unvermeidbar noch von der Beugung der Wörter überrundet, die das offenbar klaglos über sich ergehen lassen. Weiterlesen

Wenn der Wind die Harfe spielt

H. Joachim Schlichting Spektrum der Wissenschaft 11 (2020), S. 52 – 53

Du, einer luftgebornen Muse
Geheimnisvolles Saitenspiel

Eduard Mörike (1804–1875)

Von Luft umströmte Drähte erzeugen Wirbel, die sich hinter ihnen abwechselnd nach oben und unten hin ablösen. Aus dieser Schwingung werden unter den richtigen Umständen weithin hörbare Töne.

Noch vor wenigen Jahrzehnten wurden viele Haushalte vorwiegend durch oberirdische Telegrafen – und Stromleitungen mit ihren typischen hölzernen Masten mit Nachrichten und elektrischer Energie versorgt. Mit ihnen ist auch ein eindrucksvolles akustisches Phänomen fast ganz verschwunden. Bei stärkerem Wind oder wenn man sein Ohr an einen der Masten hielt, waren heulende, je nach der Stärke des Windes geisterhaft klingende auf- und abschwellende, langgezogene Töne zu hören, wie man sie sonst nicht kennt. Sie werden von den Drähten hervorgerufen, die den Wind in hörbare Schwingung versetzen. Die Masten fungierten als Resonanzkörper und ermöglichten, dass die Töne auch bei mäßigem Wind gehört werden können. Selbst wenn heute manchmal noch in ländlichen Gegenden solche Stromleitungen zu den Häusern führen, funktionieren sie meist nicht. Denn inzwischen werden statt der relativ dünnen Drähte dicke isolierte Leitungen benutzt, die dafür weniger geeignet sind. Bei stärkerem Wind kann man ähnliche Töne allenfalls an Weidenzäunen wahrnehmen, die aus einzelnen gespannten zylindrischen Drähten bestehen.
Schon lange vor der Elektrifizierung haben die Menschen winderzeugte Klänge in der Natur wahrgenommen und mit Hilfe besonderer Musikinstrumente „einzufangen“ versucht. Diese sogenannten Windharfen oder auch Äolsharfen (nach dem Windgott Aeolos benannt) waren bereits im Altertum bekannt. In der Neuzeit wurde die erste Äolsharfe von Athanasius Kircher (1602 – 1680) gebaut; aber erst viel später zur Zeit der Romantik im 19. Jahrhundert erlebte dieses Musikinstrument der Natur eine wahre Blütezeit. Auch heute noch kann man Äolsharfen als Kunstwerke im öffentlichen Raum vorfinden (Beispiele) und sie sind sogar für den eigenen Garten käuflich zu erwerben.
Das physikalische Prinzip der Windharfe ist lange Zeit nicht erkannt worden, obwohl man den Wind ursächlich mit dem Klang in Verbindung brachte. Erst Arbeiten von Vincent Strouhal (1850 – 1922) führten zu einer weitgehend korrekten physikalischen Erklärung. Er stellte fest, dass ein luftumströmter zylindrischer Draht selbst dann Töne erzeugt, wenn er an der Schwingung gar nicht teilnimmt. Die jeweilige Tonhöhe bzw. Frequenz erweist sich als unabhängig von Material, Länge und Spannung des Drahts. Sie ist lediglich proportional zur Windgeschwindigkeit und umgekehrt proportional zum Drahtdurchmesser, wobei die dimensionslose Proportionalitätskonstante für viele zylindrische Objekte einen Wert von ungefähr 0,2 besitzt.
Beispiel: Bei einer mäßigen Brise mit einer Windgeschwindigkeit von 10 m/s würde ein Draht von 5 mm Durchmesser einen Ton mit einer Frequenz  abgeben.
Die Tonentstehung ist darauf zurückzuführen, dass die Luft vor dem im Luftstrom stehenden zylindrischen Draht verdichtet wird und infolge die Reibung der Luft mit den Drahträndern der Druckausgleich mit der verdünnten Luft hinter dem Draht nicht kontinuierlich, sondern ruckweise periodisch erfolgt. Dabei lösen sich abwechselnd an der einen und anderen Seite des Zylindermantels entgegengesetzt rotierende Wirbel, die zu einer sogenannten Kármánschen Wirbelstraße führen (Abbildung). Weil sich die Wirbel anschaulich gesprochen vom Draht abstoßen, üben sie auf diesen eine Reaktionskraft aus, mit einer zur Richtung des Drahts senkrechten Komponente. Diese Kräfte sind zwar im Allgemeinen sehr klein und bringen den Draht kaum in Bewegung. Nähert sich die Frequenz der Wirbelablösung jedoch einer der Eigenfrequenzen des Drahts, so wird dieser zum Mitschwingen angeregt, was als Ton hörbar werden kann.
Als Eigenfrequenz eines eingespannten Drahts bezeichnet man die durch die Masse, die Spannung und die Länge des Drahts festgelegte Frequenz, mit der der Draht schwingt, wenn er zum Beispiel durch Zupfen ausgelenkt wird. Neben der Grundfrequenz, in der sich der Draht als Ganzes zwischen den beiden festen Enden periodisch hin und her bewegt treten im Allgemeinen zusätzlich Oberschwingungen auf, wobei der Draht auch noch in sich schwingt. Die Frequenzen dieser Oberschwingungen sind ganzzahlige Vielfache der Grundschwingung.
Stimmt nun eine der Eigenfrequenzen des schwingenden Drahtes ungefähr mit der Frequenz der Wirbelablösung überein, so gerät er in eine Resonanzschwingung. Dabei schaukelt er sich zu einer so großen Auslenkung auf, dass der durch die Wirbel hervorgerufene leise Ton kräftig verstärkt und gegebenenfalls weithin hörbar wird.
Bemerkenswert ist, dass die Anregungsfrequenz nur in der Nähe der Eigenfrequenz liegen muss um den Draht in Resonanz zu bringen. Denn normalerweise schwingt ein System genau mit der Frequenz, in der es angeregt wird. Im vorliegenden Fall rastet der schwingende Draht gewissermaßen in die Eigenfrequenz ein. In der Fachwissenschaft ist dieses Verhalten als Lock-in-Effekt bekannt, der bei zahlreichen (nicht nur mechanischen) Schwingungssystemen auftritt.
Ohne Lock-in wäre eine Äolsharfe und andere tönende Drähte in der bekannten Form nicht möglich. Da nämlich die Windgeschwindigkeit nie völlig konstant ist und zumindest ein wenig schwankt, würde ansonsten die Frequenz der Wirbelablösung immer wieder von der Eigenfrequenz des Drahtes abweichen. Der tönende Draht bzw. die Äolsharfe wären also die meiste Zeit stumm, was aber bekanntlich nicht der Fall ist. Die Auslenkung des schwingenden Drahts ist innerhalb des Lock-in-Bereichs ist allerdings am größten, wenn der Draht genau mit der Wirbelablösungsfrequenz schwingt und nimmt der Abweichung entsprechend ab. Das ist der Grund für die Schwankungen der Lautstärke der jeweiligen äolischen Töne mit der Windgeschwindigkeit, die der Äolsharfe den typischen anschwellenden und wieder verhallenden Klang verleihen. Bei größeren Variationen der Windgeschwindigkeit werden gegebenenfalls andere Saiten der Äolsharfe zum Klingen gebracht.
Die Äolsharfe ist wie Klavier, Geige und die Harfe ein Saiteninstrument. Während letztere durch planvolles Anschlagen, Streichen und Zupfen zu vorher komponierten Klangfolgen veranlasst werden, überlässt man das Klingen der Äolsharfe weitgehend den unberechenbaren Strömungen des Windes, der mit Hilfe von Luftwirbeln das Schwingungsverhalten der Saiten bestimmt.
Der Anregungsmechanismus der Äolsharfe kann ganz allgemein bei von Luft umströmten Zylindern beobachtet werden kann, lässt sich übrigens mit einem einfachen Experiment demonstrieren. Dazu benötigt man nur einen längeren, schlauchartigen Luftballon (z.B. Länge 1,50 m und Durchmesser 5 cm), den man an einem Ende erfasst und schnell mit dem Arm hin und her oder auf und ab bewegt. Der Ballon gerät dadurch deutlich fühlbar und sichtbar in eine Schwingung senkrecht zur Bewegungsrichtung.
Die brummenden Töne, die zuweilen unter Hochspannungsleitungen zu hören sind, haben einen ganz anderen physikalischen Ursprung. Sie rühren zwar auch von schwingenden Drähten her, werden aber nicht mechanisch durch strömende Luft, sondern durch elektrodynamische Vorgänge in Schwingung versetzt: Jeder stromdurchflossene Leiter ist von einem Magnetfeld umgeben. Die Magnetfelder der bei Hochspannungsleitungen parallel verlaufenden Leiterseile wirken so aufeinander, dass sich gleichartige Felder abstoßen und unterschiedliche Felder anziehen. Dadurch geraten die Seile in einem 50-Hertz-Takt in Schwingung, die auf die Luft übertragen wird und auf diese Weise als typischer Brummton an unser Ohr gelangt –  und sind auch in dieser Hinsicht nicht mit den wohlklingenden Äolharfen zu vergleichen.

Publizierte Version: Wenn der Wind die Harfe spielt.

Aeolsorgelmusik am frühen Morgen

Es ist ein wenig windig auf dieser morgendlichen Wanderung durch die Krummhörn. Wind ist hier fast immer, davon zeugen zahlreiche Windkraftanlagen, die die natürlichen Luftströme auf technische Weise visualisieren und ihnen dabei auch noch Energie abnehmen. Aber es gibt auch die eher unspektakulären, leisen Töne, die – wie einst die Sirenen Odysseus betörten – mich zu einer Brücke locken, aus dessen Richtung die außerirdisch klingende Musik kommt. Weiterlesen

Aeolus-Orgel – das Raunen des Windes

Aeolsflöte-1Wenn ich diese Brücke überquere höre ich häufig, einen feinen auf- und abschwellenden tiefen Ton wie auf einem Alphorn geblasen. Er ist so rein, dass er aus dem Einerlei des akustischen Hintergrunds deutlich hervorsticht. Lange war mir der Ton ein Rätsel. Mir ging dabei allerlei dummes Zeug durch den Kopf. Als ich schließlich feststellte, dass der Ton vom Wind abhängig war, fand ich die Ursache in Form eines beschädigten Rohrpfosten im Brückengeländer. Wie man an dem vergrößerten Ausschnitt (Abbildung unten) gut erkennen kann, enthält dieser einen deutlich erkennbaren Riss. Er ist für den Wind so etwas wie das Mundstück, das Rohr eine Flöte. Indem der Wind das Rohr tangential umspielt, wird wie beim Blasen auf einem Schlüssel eine Schwingung der Luftsäule im Rohr angeregt. Weiterlesen

Musik an der Schwelle der neuzeitlichen Physik

Musik_IMG_9366rvSchlichting, H. Joachim. In: Stefan Kolling (Hrsg.): Beiträge zur Experimentalphysik, Didaktik und computergestützten Physik. Berlin: Logos 2007, S. 237 – 260

Zwischen der Musik als akustischem Phänomen und der physikalischen Forschung als einer Art Suche nach musikalischen Harmonien bestehen zahlreiche Beziehungen. Bei der Beschreibung von Musik und Musikinstrumenten spielt die Physik eine wichtige Rolle. Umgekehrt hat die Musik weit über rein metaphorische Bezüge hinausgehend vor allem in der revolutionären Phase, die der Ausbildung des Paradigmas der neuzeitlichen Physik vorausging, der physikalischen Forschung wichtige Impulse gegeben. Vor dem gemeinsamen kulturellen Hintergrund der Entwicklung von neuzeitlicher Musik und Physik werden einige Aspekte dieser Beziehungen skizziert.

PDF: Musik an der Schwelle der neuzeitlichen Physik

Die Energie der Musik – Rotierende Weihnachtskugeln

Schlichting, H. Joachim; Ucke, Christian. In: Physik in unserer Zeit 27/6, 262-263 (1996).

In der Weihnachtszeit werden viele Weihnachtslieder gespielt. Wir stellen uns die Frage, ob die dabei aufgewandte akustische Energie nicht ausgenutzt werden könnte, um beispielsweise eine Weihnachtspyramide anzutreiben [ 1]. Das würde nicht nur Kerzen sparen, sondern auch das von der Kerzenflamme ausgehende Gefahrenpotential verringern.

PDF: Die Energie der Musik – Rotierende Weihnachtskugeln

Es tönen die Gläser

Schlichting, H. Joachim; Ucke, Christian. In: Physik in unserer Zeit 26/3, 138-139 (1995).

„Jede Glocke hat ihren K1öppel“, heißt es in einem deutschen Sprichwort. Einem Weinglas entlockt man auch ohne Klöppel einen glockenartigen Ton, wenn man mit dem feuchten Finger über den Rand des Glases fährt. Wie kommt dieser Ton zustande!

PDF: Es tönen die Gläser

Musikalisches Rauschen

Piotrowski, Arndt; Nordmeier, Volkhard; Schlichting, H. Joachim. In: Deutsche Physikalische Gesellschaft (Hrsg.): Didaktik der Physik. Bad Honnef: DPG GmbH 1994

Musik wird oft nicht schön empfunden,
weil sie stets mit Geräusch verbunden.
Wilhelm Busch

Die klassische Physik zeichnet sich dadurch aus, daß sie das Verhalten von Systemen vorhersagen kann. Das setzt eine deterministische Dynamik voraus. Seitdem im Rahmen der nichtlinearen Physik auch deterministische Systeme diskutiert werden, die ein irreguläres, chaotisches Verhalten zeigen, trifft die kausale Verknüpfung von Determinismus und Vorhersagbarkeit nur noch  bedingt zu: Irreguläre Signale müssen nicht notwendig stochastisch sein, sondern können auch einem nichtlinearen deterministischen System entstammen. Weiterlesen

Photoarchiv