//
Artikel Archiv

Pendel

Diese Schlagwort ist 5 Beiträgen zugeordnet

Eine Gurke im Gleichgewicht

Es gibt Spielzeuge, wie etwa das Stehaufmännchen oder den Seiltänzer (rechtes Foto), die – wenn sie an der richtigen Stelle unterstützt werden – sich stets im stabilden Gleichgewicht befinden. Lenkt man sie aus der Ruhelage aus, so wird wie bei einem Pendel eine Kraft (genauer: ein Drehmoment) provoziert, die das System wieder in den Ruhezustand zurückbringt. Das geschieht zwar nicht auf Anhieb, aber nach einigen Schwingungen, in denen die durch die Auslenkung übertragene Energie durch Reibung an die Umgebung abgegeben wird, nimmt es den ursprünglichen Zustand wieder ein.
Die letzten Gurken in unserem Gewächshaus verhalten sich merkwürdigerweise ganz ähnlich – allein aufgrund einer raffinierten Krümmung. Vielleicht ist das eine evolutionäre Sommerschlussentwicklung, um ein längeres Überleben zu sichern. Immerhin hat es die abgebildete Gurke erreicht, dass sie nun schon einige Tage „auf“ einem Stab ruhen darf und eine Zeit lang vom Verzehr verschont bleibt.

Das Foucaultsche Pendel aus der Perspektive von Gerhard Richter

Anlässlich des 90. Geburtstags von Gerhard Richter am 9. Februar 2022

Ein Pendel behält stets seine Pendelebene bei. Das kann man leicht überprüfen. Im einfachsten Fall nimmt man ein passendes Gestell, an dem man eine kleine Kugel u. Ä. an einem Faden schwingen lässt. Dieses Pendel wird sodann auf einen drehbaren Untersatz platziert. Dazu eignet sich zum Beispiel ein Drehstuhl oder eine drehbare Tortenplatte. (Ich selbst benutze meinen alten Schallplattenspieler). Dreht man den Untersatz nun vorsichtig um sich selbst nachdem man das Pendel in Aktion gesetzt hat, so macht man eine interessante Beobachtung: Das Pendel behält unabhängig von der Drehung seine ursprüngliche Pendelebene bei. Viele finden das merkwürdig.
Was würde denn zu beobachten sein, wenn man sich in das drehende System versetzt dächte? Die Pendelebene würde sich drehen. Wäre das nicht noch merkwürdiger?
Es ist ja faktisch so, dass wir permanent auf einem drehenden System hocken, auf unserer Erde. Sie dreht sich in 24 Stunden einmal um sich selbst. Davon merken wir nur indirekt etwas, zum Beispiel dadurch dass die Sonne aufgeht, ihre Bahn zieht und wieder untergeht. Durch unser kleines Pendel-Dreh-Experiment könnte nunmehr der Gedanke aufkommen, dass ein Pendel, das man lange genug in Schwingung hält, allmählich seine Pendelebene drehen müsste, weil die Erde sich wie ein elaborierter Drehstuhl rotiert.
Einen ähnlichen Gedanken hatte im 19. Jahrhundert der Physiker Jean Bernard Léon Foucault (1819 – 1869). Nach Vorversuchen in seinem eigenen Keller konnte er am 26. März 1851 im Panthéon mit einem 67 Meter langen Pendel und einem 28 Kilogramm schweren Pendelkörper der Öffentlichkeit ein solches Experiment vorführen und damit die Erddrehung gewissermaßen spürbar werden lassen.
Würde man ein solches Foucaultsches Pendel auf dem Nordpol unserer Erde schwingen lassen, so würde sich die Pendelebene in 24 Stunden genau einmal um sich selbst drehen. Weil das Pendel an anderen Stellen der Erde schräg zur Erdachse steht, bewegt sich die Pendelebene je nach geografischer Breite langsamer.
Bei uns in Münster bräuchte das Pendel der Theorie zufolge für einen Umlauf 30 Stunden. Der empirische Beweis dafür kann inzwischen auch in der profanierten Dominikanerkirche in Münster erbracht werden, wo der Künstler Gerhard Richter (* 09.02.1932) im Rahmen der Installation „Zwei Graue Doppelspiegel für ein Pendel“ in einem ansprechenden Ambiente das „Experiment“ für jeden zugänglich gemacht hat.
Das Pendel besteht aus einem 29 m langen Seil mit einer 22 cm großen und 48 kg schweren Messingkugel. Das Seil ist in der hohen Vierungskuppel befestigt und schwingt 4 cm über der kreisrunden Bodenfläche aus Naturstein.
Damit das Pendel nicht durch unvermeidliche Reibungen (vor allem mit der Luft) abgebremst schließlich zur Ruhe kommt, wird es mit einer zentral unter der Schwingungsebene angebrachten vom Fachbereich Physik der Universität Münster entwickelten Elektronik in Gang gehalten.
Über das rein Physikalische des Pendels hinausgehend besteht das Kunstwerk aus zwei an den Wänden angebrachten grauen Doppelspiegeln. Sie reflektieren das Pendel und unvermeidlicherweise die BeobachterInnen gleich mit. Vielleicht sollen auf diese Weise Reflexionen über physikalische und gesellschaftliche Fragen zum Pendel im engeren und weiteren Sinn angeregt werden.

Ich finde das Foucaultsche Pendel in seiner frappierenden Einfachheit vor allem deshalb beeindruckend, weil es eine kosmische Bewegung auf ein menschliches Maß bringt.

Das Valett-Federpendel – Ein Künstler mit Physik

Christian Ucke, H. Joachim Schlichting. Physik in unerer Zeit 52/4 (2021), S. 197 – 199

Die Schwingung wechselt selbsttätig zwischen auf und ab und hin und her

Die Verbindung von physikalisch-mathematischen Experimenten mit künstlerisch-handwerklicher Inspiration bringt überraschende Kreationen hervor. Jochen Valett hat ein besonderes Federpendel geschaffen.

Eine mit einem passenden Körper belastete vertikal ausgelenkte Schraubenfeder führt eine harmonische Schwingung aus. Dabei verkürzt und verlängert sich die Länge der Feder periodisch. Durch nicht zu vermeidende winzige seitliche Auslenkungen des Schwingers entsteht zusätzlich eine Art Fadenpendel, das mit dem Federpendel gekoppelt ist. Wenn beide Schwingungsarten in der Weise aufeinander abgestimmt sind, dass die Periode der vertikalen Auf- und Abbewegung gerade die Hälfte der Periode der seitlichen Hin- und Herbewegung entspricht, so treiben sich die beiden Schwingungen wechselseitig an – es kommt zur Resonanz. Sie besteht darin, dass die vertikale Schwingung die seitliche Pendelschwingung aufschaukelt bis sie selbst zur Ruhe gekommen ist und dann umgekehrt die Pendelschwingung die vertikale Schwingung antreibt usw. Auf diese Weise kommt es zu einem periodischen Wechsel zwischen reiner Auf- und Abbewegung und reiner Hin- und Herbewegung (siehe: Metapendel).

Schaut man sich das Federpendel bei der Auf- und Abbewegung genauer an, so entdeckt man, dass sich die Feder bei jeder Abwärtsbewegung zwangsläufig ein wenig abwickelt, weil durch die Verlängerung der Pendellänge die Drahtlänge pro Windung größer wird. Bei der Aufwärtsbewegung ist es dann genau umgekehrt und die Feder wickelt sich ein wenig auf. Durch die damit verbundene, an den Enden der Feder gut zu beobachtende leichte Drehung um eine gedachte senkrechte Achse wird auf den Körper ein Drehmoment jeweils in der einen oder anderen Richtung ausgeübt. Dabei wird Translationsenergie in Rotationsenergie verwandelt.

Umgekehrt führt die Drehung des Körpers dazu, dass die Feder ein wenig auf- oder abgewickelt wird, wodurch die Zugkraft der Feder entsprechend variiert wird. Bei einer Abwicklung wird die Zugkraft der Feder kleiner und der Körper sinkt weiter herab, während bei einer Aufwicklung die Zugkraft zunimmt und der Körper infolgedessen höher aufsteigt.

Stimmt man nun ähnlich wie bei der Kopplung zwischen Feder- und Fadenpendel durch geeignete Maßnahmen die Perioden zwischen Feder- und Torsionspendel aufeinander ab, so erreicht man ähnlich wie bei der Kopplung zwischen vertikaler und seitlicher Schwingung, dass ein permanenter Wechsel zwischen Rotation- und Translationsschwingung bewirkt wird. Um das zu bewerkstelligen, bleibt einem nichts anderes übrig, als das Trägheitsmoment des Pendelkörpers an die Gegebenheiten anzupassen, denn an den Eigenschaften der Feder lässt sich kaum etwas verändern.

Ein solches in regelmäßiger Weise zwischen Translation und Rotation wechselndes Pendel wurde 1894 von dem Engländer Lionel Robert Wilberforce konstruiert. Es ist auch heute noch ein verbreitetes Demonstrationsgerät in physikalischen Praktika und zeigt sehr anschaulich das Phänomen gekoppelter Schwingungen. Als Pendelkörper dient meist ein Metallzylinder, an dem senkrecht zur Achse Gewindestangen mit drehbaren Muttern fixiert sind (Abb. 1). Indem man die Muttern zum Zylinder hin oder von ihm weg dreht, kann das Trägheitsmoment sehr fein variiert und die Resonanzsituation genau einjustiert werden. Weiterlesen im PDF-File

Die Einreichversion dieses Aufsatzes kann als PDF-file heruntergeladen werden.

Die Welt? Eine ewige Schaukel!

JanrvDie Welt ist nichts als eine ewige Schaukel. Alle Dinge in ihr schaukeln ohne Unterlaß. Ich beschreibe nicht das Sein, ich beschreibe den Übergang. Es ist ein Protokoll von verschiedenen und veränderlichen Zufällen, von unbestimmten und, wie es sich trifft, wohl gar von widersprechenden Vorstellungen. Nicht bloß der Wind der Zufälle bewegt mich nach seiner Richtung; sondern ich bewege mich noch obendrein, ich wechsle die Richtung. Und wer nur genau auf den Ausgangspunkt achtet, der wird sich schwerlich zweimal in  völlig derselben Lage wiederfinden (Michel de Montaigne (1533 – 1592). Weiterlesen

Regular and Chaotic Oscillations of a Rotating Pendulum

Backhaus, Udo; Schlichting, H. Joachim. In: G. Marx (Ed.): Chaos in Education II. Vesprem (Hungary) 1987, pp. 312-317.

One reason of the great success of classical physics is the ability to predict the evolution of a system from which the dynamics (equation of motion) and the initial values are known. But this ability falls with  chaotic systems.  Because of the exponential Increase of small errors in the initial conditions of a chaotic system every prediction of its behaviour becomes Impossible in shortest time. For a long time physicists thought that the chaotic behaviour of a system is due to its complexity. But recently, one found that very simple systems may become chaotic, too. As important as this realisation is the manner of the transition from order to chaos. This transition follows some general patterns: the system announces the breakdown of the deterministic behaviour. Of course, the knowledge of these patterns is of great practical Interest. The rotating pendulum presented here allows to study the transitions between regular and chaotic motions by means of computational simulations. Thereby, complete Feigenbaum scenarios and other transitions may be obtained. The numerical resuits are described in more detail in.

PDF: Regular and Chaotic Oscillations of a Rotating Pendulum

Photoarchiv