Der Winter unternimmt immer mal wieder einen Versuch, Fuß zu fassen und sei es nur in Form von kleinen Eiskristallstrukturen, die eher an Spuren von Vogelfüßen erinnern als an Eis und Schnee.
Dennoch ist dieses Foto einer Fensterscheibe Zeugnis der fantastischen Metamorphose: Unsichtbarer Wasserdampf, der uns meist unmerklich umgibt, zeigt sich in weißen Kristallstrukturen, die das düstere Grau in Grau des Winters ästhetisch konterkarieren.
Die Verteilung der einzelnen Kristallbüschel richtet sich nach sogenannten Keimen, die auf der Glasfläche in Form von kleinen Staubpartikeln statistisch verteilt vorhanden sind. Denn aller Anfang ist schwer: Um vom dampfförmigen in den festen Zustand überzugehen benötigen die frei umherdriftenden Wassermoleküle einen Ausgangspunkt, an den sie andocken können. Dazu sind auch übrig gebliebene Spinnfäden willkommen. Die Eiskristalle verschaffen ihnen eine Sichtbarkeit in völlig neuem Gewand. Nach gelungenem Anfang docken die nachfolgenden Wassermoleküle bevorzugt an bereits bestehenden Kristallen an, sodass diese nach dem Prinzip: „Wer da hat dem wird gegeben“ ein zügiges Wachstum an den Tag legen.
Warum ist einer der Kondensstreifen rot? Weiterlesen
Frage: Wie kommt es zu den Nebelstreifen?
Antwort: Bei dieser Art Kondensstreifen handelt es sich um sogenannte Wirbelschleppen. Sie zeigen sich manchmal kurz nach dem Start oder vor der Landung. Dann nämlich fährt der Jet die Landeklappen aus der Tragfläche (die korrekter als „Auftriebshilfen“ bezeichnet werden sollten), wodurch sich deren Anstellwinkel vergrößert und damit die aerodynamische Auftriebskraft auf eine größere Fläche wirkt. So gelingt das Abheben auch bei verhältnismäßig niedrigen Geschwindigkeiten.
Auf diese Weise entsteht ein enormer Druckunterschied zwischen Ober- und Unterseite der Tragflächen, der an ihren Seiten zu Ausgleichsströmungen von unten nach oben führt. Weil gleichzeitig die Luft von vorn nach hinten strömt, kommt es zu einer zopfartigen Aufwicklung der Strömungsfäden. Und weil der Druck in der Luftströmung stark abnimmt, sinkt die Temperatur schlagartig – nicht anders als bei einem gerade geöffneten Ventils eines Autoreifens. Denn für die mit der Druckabnahme verbundene Ausdehnung benötigt die Luft Energie, die sie aus dem Reservoir ihrer inneren (thermischen) Energie abzapft. Der Vorgang läuft nämlich so schnell ab, dass es zu lange dauern würde, bis durch Wärmeleitung Energie aus der weiteren Umgebung herangeschafft würde. Durch die Abnahme ihrer inneren Energie kühlt sich die Luft lokal stark ab. Und wenn dann auch noch die absolute Wasserdampfkonzentration größer ist als die maximale Wasserdampfkonzentration bei dieser niedrigen Temperatur, kondensiert der überschüssige Wasserdampf zu Wassertröpfchen: Es kommt also zur beobachteten Nebelbildung.
Die Wirbelschleppen unterscheiden sich von den normalen Kondensstreifen auch noch durch einem interessanten Nebeneffekt: Sie treten immer paarweise mit gegenläufigem Drehsinn auf, sodass sich der Gesamtdrehimpuls zu Null summiert.
Nebelfäden über den Tragflächen treten bei genügender Luftfeuchte manchmal auch in voller Reiseflughöhe über die Tragflächen strömend auf. Sie verdanken sich dem starken Druckabfall über den Tragflächen und führen bei den ohnehin schon sehr tiefen Temperaturen die Kondensation überspringend zur Resublimation des Wasserdampfs zu feinen Eiskristallen.
Selbst die vom letzten Jahr übriggebliebenen, vertrockneten Blätter einer Buche erstrahlen in neuem Glanz, wenn der Winter sie mit feinen Eisnadeln schmückt. Diese filigranen und gegen Berührung sehr sensiblen Kunstwerke der Natur entstehen zum einen dann, wenn die Temperatur einige Grade unter Null liegt und die Wasserdampfkonzentration sehr hoch ist (relative Feuchte über 90%). Weiterlesen
Kondensstreifen entstehen durch Kondensation oder Kristallisation von Wasserdampf in den Abgasen von Flugzeugen der auf diese Weise sichtbar wird. Denn an den Wassertröpfchen bzw. Eiskristallen wird das Sonnenlicht gestreut und dadurch auch in unsere Augen abgelenkt, wodurch wir die Streifen als wolkenartige Gebilde wahrnehmen. Kondensstreifen sind genau genommen nichts anderes als langgezogene Wolken und verhalten sich im negativen wie im positiven Sinne so. Weiterlesen
Schlichting, H. Joachim. In: Physik in unserer Zeit 44/6 (2013), S. 272-273
An kalten Wintertagen kann der Wasserdampf in den Abgasen eines Autos schneeweiße Raureifbeläge auf dem kalten Pflaster hervorrufen.
PDF: kann beim Autor angefordert werden (schlichting@uni-muenster.de)
Schlichting, H. Joachim. In: Spektrum der Wissenschaft 2 (2010), S. 39
Beim Wachsen von Eisblumen am Fenster wirken Zufall und Notwendigkeit zusammen.
Doch an den Fensterscheiben, Wer malte die Blätter da?
Ihr lacht wohl über den Träumer, Der Blumen im Winter sah?
Wilhelm Müller (1794 – 1827)
Heute muss man sie wohl als bedrohte Art ansehen, denn ihre größten Feinde – Zentralheizungen und wärmedämmende Doppelscheiben – haben sich weithin etabliert. In früheren Wintern jedoch gehörten Eisblumen am Fenster zu einer alltäglichen Erscheinung: »Es war ein ziemlich kalter Tag und draußen lag fußhoher Schnee. Drinnen aber war es behaglich … die Wanduhr ging in starkem Schlag und der Kachelofen tat das Seine … während Line weitab an dem ganz mit Eisblumen überdeckten Fenster saß und sich ein Guckloch gepustet hatte, durch das sie nun bequem sehen konnte, was auf der Straße vorging.« (Theodor Fontane, Unterm Birnbaum, 1885).
Zuvor war, davon dürfen wir ausgehen, die Temperatur der Glasscheibe allmählich immer tiefer gesunken. Zunächst unter den Taupunkt. Ab diesem Zeitpunkt ist mehr Wasserdampf in der Luft, als diese fassen kann, so dass er sich verflüssigt und kondensiert, sich also in Form winziger Tröpfchen an die Scheibe anlagert. Sobald deren Temperatur nun auch den Gefrierpunkt des Wassers unterschreitet – um mindestens ein bis zwei Grad –, kristallisieren sie schließlich zu Eis. Manchmal kommt es auch gar nicht erst zum Zwischenschritt des Verflüssigens. Denn unter bestimmten Bedingungen geht Wasserdampf auf direktem Weg in Eis über, er resublimiert.
Der Ursprung der Eisblumen liegt in winzigen Kristallen mit einer für Wassermoleküle charakteristischen sechseckigen Struktur. Sie entstehen an Kondensationskeimen, etwa Schmutzpartikeln, an denen sich Tröpfchen beziehungsweise Kristalle spontan bilden können. Ihre Form beeinflusst das Kristallwachstum zunächst in zufälliger Weise, bald aber kommt die Notwendigkeit hinzu. Denn wo die Kristallisation stattfindet, wird auch Wärme abgegeben, und zwar ganz schön viel.
Es ist dieselbe Menge, die man Eis zum Auftauen zuführen muss – und jeder weiß, wie lange sich Eisstücke im Erfrischungsgetränk halten. Das Kristallwachstum käme sogar zum Stillstand, würde die frei werdende Wärme nicht schnell genug abtransportiert. Das heißt aber auch: Der Kristall wächst bevorzugt dorthin, wo die Wärme am besten abgegeben werden kann, nämlich weg von seinem Ursprung. Es bilden sich darum exponierte Spitzen, an deren mitwachsenden Flanken die Wahrscheinlichkeit für weitere Anlagerungen ebenfalls steigt. Diese Nebenäste wachsen ihrerseits weder entlang der Hauptspitze noch im rechten Winkel dazu, sondern suchen stattdessen einen »schrägen« Kompromiss. Nur so können auch sie die entstehende Wärme optimal abgeben.
Allmählich entsteht ein farnartiges Gebilde, das ganz zum Schluss, wenn auch die Zwischenräume gefrieren, eine blattartige Form gewinnt. Aus dem Zusammenwirken von Zufall und Notwendigkeit sind Strukturen entstanden, wie wir sie auch bei (biologischen) Blättern und Blumen beobachten können: Sie ähneln einander zwar, sind aber nie identisch. Erfahrungsgemäß bilden sich die schönsten Formen bei einer Scheibentemperatur von etwa minus zwei Grad Celsius. Wirkliche Vielfalt entfaltet sich zudem nur, wenn das Fenster leicht verschmutzt ist und genügend Kondensationskeime vorhanden sind. Sauberkeit ist für Schönheit also keine Voraussetzung.
Schlichting, H. Joachim. In: Physik in unserer Zeit 37/6 (2006) 295
Es ist erstaunlich, wie die Natur Ränder und Begrenzungen auf unterschiedliche Weise hervorzuheben vermag. Im Winter können wir wieder verfolgen, wie Raureif und Eisnadeln die Ränder von Blättern verzieren. Wie kommt es zu diesem Effekt?