//
Artikel Archiv

Rotation

Diese Schlagwort ist 40 Beiträgen zugeordnet

Selbstaufzeichnung von Schmutzbahnen

Eine unangenehme Eigenschaft von Schmutz besteht darin, dass er oft ziemlich anhänglich ist. Er bleibt an den Schuhen, an den Reifen und fast an allem hängen, wenn er nicht aktiv daran gehindert wird. Schaut man sich Oldtimer-Autos an, so mag ja vieles an ihnen fehlen, aber Kotflügel findet man fast immer. Selbst die Pferdekutschen hatten bereits solche, auch wenn die „Flügel“ heute weniger vor Kot schützen als vor Dreck ganz allgemein. Dabei besteht dieser Dreck vor allem aus Staub, Erde, Sand, die mit Wasser vermengt eine klebrige Masse – Matsch – ergeben.
Die Ursache für diese Anhänglichkeit ist vor allem die Wasserliebe (Hydrophilie) des Straßendrecks einerseits und der Karosserie des Autos andererseits. Wenn man durch Matsch fährt, bleibt dieser zum Teil an den Reifen kleben. Das liegt daran, dass das Reifenmaterial ebenso wasserliebend ist wie der Dreck, der mit Wasser zusammen eine Art Kleister bildet.
Wenn sich die Reifen drehen, wird der anhaftende Schmutz ebenfalls auf die Rundreise geschickt. Aber nur bei kleinen Geschwindigkeit. Bei höherer Drehzahl, löst sich der Schmutz. Um das zu verstehen, müssen wir kurz auf den physikalischen Trägheitssatz zu sprechen kommen. Demnach bleibt ein Körper in Ruhe oder gleichförmiger Bewegung (bewegt sich also mit konstanter Geschwindigkeit geradeaus), wenn er durch keine Kraft daran gehindert wird. Der mit den Reifen in Bewegung gesetzte Schmutz wird auf eine Rundreise gezwungen. Das macht er aber nur solange mit, wie die Adhäsionskraft ausreicht, die Kraft mit der der Schmutz vom drehenden Reifen zum Zentrum der Drehbewegung gezogen wird, zu kompensieren. Da diese sogenannte Zentripetalkraft mit der Geschwindigkeit zunimmt, die Adhäsionskraft aber konstant ist, kommt es schließlich zur Trennung von Reifen und Schmutz. Auf diese Weise sich selbst überlassen bewegt sich der Schmutz geradlinig gleichförmig weiter und entfernt sich tangential vom Reifen. Die Kotflügel sind dazu da, den sich entfernenden Schmutz aufzufangen. Dabei kann es passieren, dass insbesondere bei Kurvenfahrten ein Teil streifend an der Karosserie entlang schleift und teilweise haften bleibt. Dadurch werden die geraden Bahnen gewissermaßen aufzeichnet (siehe Foto).
Genau genommen ist der Weg des frei gewordenen Schmutzes auch nicht ganz gerade und gleichförmig. Denn sobald er den Reifen verlassen hat, macht sich die Erdanziehungskraft bemerkbar, durch die er auf eine Bahn des schiefen Wurfs gezwungen wird. Aber diese Kraft ist vergleichsweise so gering, dass die Bahnkrümmung auf dem kurzen Weg bis zum Kotflügel nicht zu sehen wäre. Nur wenn der Kotflügel fehlte, würde der schräg nach oben startende Schmutz im hohen Bogen wieder zur Erde oder vorher auf andere Verkehrsteilnehmer zurückkommen. Dabei hätte er abermals Gelegenheit, seine Anhänglichkeit unter Beweis zu stellen.
Doch kaum einer interessiert sich für die spannende Geschichte des Schmutzes und die rühmliche Rolle, die ein Kotflügel spielt…

Verlorene Schuhe

Schuhe assoziiert man nicht gerade mit großer Höhe, vermitteln sie doch normalerweise den Kontakt der meisten Menschen mit dem Boden. Umso erstaunter war ich als mein Blick auf ein Paar Schuhe fiel, das offenbar die Bodenhaftung verloren hatte und in großer Höhe auf einer über die Straße gespannten Stromleitung balancierte. Interessant ist daran nicht nur, warum und in welchem Zusammenhang (nach dem Zweck will ich gar nicht erst fragen) jemand das Kunststück vollbracht hat, die Schuhe – auch wenn es nur Latschen sind – auf diese nicht gerade übliche Weise zu präsentieren oder gar zu entsorgen, denn mit vertretbarem Aufwand wird man sie von dort nicht wieder in normale Reichweite bringen.
Ist schon die Hinaufbeförderung und Fixierung eine nicht gerade einfache Aktion, so dürften mit alltäglichen Mitteln versuchte Rückführungsaktionen ziemlich aussichtslos sein. Denn das Schuhpaar baumelt hier in einer ziemlich stabilen Position.
Und hier beginnt die Physik im engeren Sinn: Durch das Zusammenbinden hat man zum einen erreicht, dass die Schuhe, wenn sie denn den gespannten Draht in geeigneter Weise treffen, überhaupt eine Möglichkeit haben, hängen zu bleiben – genauso wie sie es auf dem Foto tun und das seit langem. Da sie beide die gleiche Masse haben – Links- und Rechtsvertauschung ändert die Masse nicht – ziehen beide mit derselben Kraft am Seil. Die Reibungskraft des Bandes* mit der gespannten Leitung ist proportional zur Masse der beiden Schuhe und zudem infolge der Krümmung besonders groß, sodass weder ein starker Wind noch gezielte Steinwürfe dem etwas anhaben können. Es sei den man schaffte es, einen Gegenstand ausreichender Masse so stark zu beschleunigen und so präzise zu zielen, dass in dieser Höhe einer der Schuhe genügend angehoben und damit das Kräftegleichgewicht kurzzeitig aufgehoben würde.
Ich will nicht ausschließen, dass dies mit viel Übung und Geschick möglich wäre – aber wann sollte das in einer belebten Straße geschehen?
Das Hinaufbefördern ist hingegen einfacher, wenn auch nicht einfach. Man gibt dem zusammenhängenden Schuhpaar einen gehörigen Drall, wodurch sich wegen der Trägheit der Schuhe das sie verbindede Seil spannen und das System rotierend mit der Leitung zusammentreffen würden. Dabei käme es dann zur Umschlingung und der damit verbundenen Fixierung der Schuhe.
Aber auch dazu gehört Übung – oder Glück?, sodass die nach dieser Überlegung noch mehr als beim ersten Blick zu bestaunende „Installation“ nach wie vor einen Teil ihres Geheimnisses bewahrt.

Zusatz: Inzwischen habe ich von einem Freund den Hinweis auf einen englischsprachigen Wikipedia-Artikel erhalten (https://en.wikipedia.org/wiki/Shoe_tossing). Demnach handelt es sich beim Schuhewerfen offenbar um einen Sport. Shoe-tossing, auch Shoefiti nennt man diese Beschäftigung, bei der ein Paar geschnürte Schuhe auf hohe Drähte (z. B. Telefondrähte und Stromleitungen) oder auf Äste geworfen wird. Shoe-Tossing kommt in Nordamerika, Lateinamerika, Europa, Australien, Neuseeland und Südafrika sowohl in ländlichen als auch in städtischen Gebieten vor. Oft handelt es sich bei den Schuhen um Turnschuhe. In unserem Fall waren es einfache Latschen. Ich sah es allerdings erst zweimal.


* Es handelt sich offenbar nicht um Schnürsenkel, die noch eine ganz andere physikalische Problematik ins Spiel brächten.

Das Valett-Federpendel – Ein Künstler mit Physik

Christian Ucke, H. Joachim Schlichting. Physik in unerer Zeit 52/4 (2021), S. 197 – 199

Die Schwingung wechselt selbsttätig zwischen auf und ab und hin und her

Die Verbindung von physikalisch-mathematischen Experimenten mit künstlerisch-handwerklicher Inspiration bringt überraschende Kreationen hervor. Jochen Valett hat ein besonderes Federpendel geschaffen.

Eine mit einem passenden Körper belastete vertikal ausgelenkte Schraubenfeder führt eine harmonische Schwingung aus. Dabei verkürzt und verlängert sich die Länge der Feder periodisch. Durch nicht zu vermeidende winzige seitliche Auslenkungen des Schwingers entsteht zusätzlich eine Art Fadenpendel, das mit dem Federpendel gekoppelt ist. Wenn beide Schwingungsarten in der Weise aufeinander abgestimmt sind, dass die Periode der vertikalen Auf- und Abbewegung gerade die Hälfte der Periode der seitlichen Hin- und Herbewegung entspricht, so treiben sich die beiden Schwingungen wechselseitig an – es kommt zur Resonanz. Sie besteht darin, dass die vertikale Schwingung die seitliche Pendelschwingung aufschaukelt bis sie selbst zur Ruhe gekommen ist und dann umgekehrt die Pendelschwingung die vertikale Schwingung antreibt usw. Auf diese Weise kommt es zu einem periodischen Wechsel zwischen reiner Auf- und Abbewegung und reiner Hin- und Herbewegung (siehe: Metapendel).

Schaut man sich das Federpendel bei der Auf- und Abbewegung genauer an, so entdeckt man, dass sich die Feder bei jeder Abwärtsbewegung zwangsläufig ein wenig abwickelt, weil durch die Verlängerung der Pendellänge die Drahtlänge pro Windung größer wird. Bei der Aufwärtsbewegung ist es dann genau umgekehrt und die Feder wickelt sich ein wenig auf. Durch die damit verbundene, an den Enden der Feder gut zu beobachtende leichte Drehung um eine gedachte senkrechte Achse wird auf den Körper ein Drehmoment jeweils in der einen oder anderen Richtung ausgeübt. Dabei wird Translationsenergie in Rotationsenergie verwandelt.

Umgekehrt führt die Drehung des Körpers dazu, dass die Feder ein wenig auf- oder abgewickelt wird, wodurch die Zugkraft der Feder entsprechend variiert wird. Bei einer Abwicklung wird die Zugkraft der Feder kleiner und der Körper sinkt weiter herab, während bei einer Aufwicklung die Zugkraft zunimmt und der Körper infolgedessen höher aufsteigt.

Stimmt man nun ähnlich wie bei der Kopplung zwischen Feder- und Fadenpendel durch geeignete Maßnahmen die Perioden zwischen Feder- und Torsionspendel aufeinander ab, so erreicht man ähnlich wie bei der Kopplung zwischen vertikaler und seitlicher Schwingung, dass ein permanenter Wechsel zwischen Rotation- und Translationsschwingung bewirkt wird. Um das zu bewerkstelligen, bleibt einem nichts anderes übrig, als das Trägheitsmoment des Pendelkörpers an die Gegebenheiten anzupassen, denn an den Eigenschaften der Feder lässt sich kaum etwas verändern.

Ein solches in regelmäßiger Weise zwischen Translation und Rotation wechselndes Pendel wurde 1894 von dem Engländer Lionel Robert Wilberforce konstruiert. Es ist auch heute noch ein verbreitetes Demonstrationsgerät in physikalischen Praktika und zeigt sehr anschaulich das Phänomen gekoppelter Schwingungen. Als Pendelkörper dient meist ein Metallzylinder, an dem senkrecht zur Achse Gewindestangen mit drehbaren Muttern fixiert sind (Abb. 1). Indem man die Muttern zum Zylinder hin oder von ihm weg dreht, kann das Trägheitsmoment sehr fein variiert und die Resonanzsituation genau einjustiert werden. Weiterlesen im PDF-File

Die Einreichversion dieses Aufsatzes kann als PDF-file heruntergeladen werden.

Vermeintliche Richtungsumkehr beim Kreisel

Wenn man einen rotierenden Kreisel des im Foto abgebildeten Typs bis zum bitteren Ende beobachtet, wird man eine auf den ersten Blick merkwürdige Beobachtung machen können. Kurz vor dem Ende der Drehung neigt sich die Kreiselebene so weit, dass der Rand der Kreiselscheibe den Boden berührt. Infolge der dabei auftretenden Gleitreibung wird der Kreisel so stark gebremst, dass er schließlich auf dem Rand der Kreiselebene noch einige Male abrollt bis er vollends zur Ruhe kommt. Bei diesem Übergang scheint eine Richtungsumkehr einzutreten. Die Rollbewegung scheint in umgekehrter Richtung zu erfolgen wie die ursprüngliche Drehung des aufrechten Kreisels. Weiterlesen

Physik des Karussellkreisels – Doppeltes Drehspiel

Christian Ucke, Hans Joachim Schlichting. Physik in unser Zeit 51/3 (2020). S. 138-140

Kreisel müssen nicht unbedingt mit der Spitze auf einer festen Unterlage rotieren. Im hier vorgestellten Spielzeug bringen zwei hängende Kreisel durch eine raffinierte Reibungskopplung eine drehbar gelagerte Stange in Rotation, indem diese Drehimpuls von den Kreiseln übernimmt.

Der in der Abbildung 1  gezeigte Karussellkreisel besteht aus einem Ständer mit einer konkaven Einbuchtung oben, einer Haltestange sowie zwei daran angehängten Kreiseln. Die klassischen, per Hand anzudrehenden Holzkreisel enthalten in der Achse einen dünnen, zylindrischen Magneten, dessen ebene Stirnfläche mit dem Kreiselstiel oben abschließt. Die Haltestange hat mittig einen kurzen Stift mit einer kleinen Stahlkugel von ungefähr 2 mm Durchmesser am Ende, der in der konkaven Einbuchtung frei drehbar lagert. Weiterlesen

Der angekettete Ring oder: Strukturbildende Verhakung

Das Kunststück ist einfach: Eine in sich geschlossene Kette wird mit der einen etwas gespreizten Hand so gehalten, dass die beiden Halbketten locker dicht nebeneinander herunterhängen. Mit der anderen Hand wird von unten ein Ring über die Kette geschoben. Indem die beiden Teile der Kette den Ring berühren, lässt man den Ring fallen und das Unerwartete tritt ein: Der Ring fällt nicht zu Boden, sondern wird von der Kette gefesselt und bleibt am unteren Ende hängen. Man muss den Knoten in der Kette lösen, um den Ring wieder frei zu bekommen. Die mit etwas Übung leicht durchzuführende Aktion steht in keinem Verhältnis zur Unglaublichkeit des Ergebnisses. Wie die nebenstehenden Bilder einer Slow-motion Fotoserie* zeigen, ist hier jedoch keineswegs Zauberei im Spiel sondern knallharte Physik. Weiterlesen

El balanceo de las hojas al caer

H. Joachim Schlichting. Investigación y Ciencia Septiembre 2019  Curiosidades de la física

La manera en que fluye el aire alrededor de las hojas que caen de un árbol da lugar a varios patrones de movimiento recurrentes.

La elegancia que a menudo muestran las hojas cuando caen de un árbol no es casual. Dependiendo de las condiciones iniciales, su movimiento puede clasificarse en tres tipos básicos. [GETTY IMAGES/VIT-PLUS/ISTOCK]

A muchas personas les afecta emocionalmente la caída de las hojas en otoño, un espectáculo natural del que los poetas llevan hablando desde tiempos inmemoriales. Así, Edmond Rostand hizo que su Cyrano de Bergerac exclamara:
¡Qué bien caen! Cómo saben revestir de una belleza postrera ese trayecto tan corto de la rama a la tierra; y a pesar de su espanto por pudrirse en el suelo, ¡intentan que su caída tenga la gracia de un vuelo!
Este pasaje formula de manera poética la interesante observación —desde el punto de vista de la física— de que las hojas no solo se bambolean al azar mientras caen, sino que, a menudo, muestran movimientos regulares.
Si estudiamos el fenómeno con mayor detenimiento, podremos reconocer ciertas formas básicas que se distinguen especialmente bien cuando el viento está en calma. Aparte de la caída irregular y caótica, a menudo podemos encontrar tres patrones concretos.
El primero es la caída en posición horizontal, donde la hoja flota plana en el aire y solo se balancea ligeramente en torno a dicha posición. En segundo lugar tenemos la caída oscilante, en la que las hojas se mecen alternativamente a un lado y a otro de manera bastante regular. Y por último podremos observar la caída rotatoria, caracterizada por un movimiento en el que la hoja gira sobre sí misma y experimenta una notable desviación lateral (véase la figura 1).

Flujos de aire
Para esbozar una explicación, podemos simplificar e imaginarnos que la gravedad actúa sobre el centro de masas de la hoja. La velocidad de esta aumentaría de modo constante debido a la aceleración de la gravedad si no fuera por la fuerza de resistencia del aire, que aumenta con el cuadrado de la velocidad y es proporcional al área de la sección transversal expuesta al aire incidente…

PDF: El balanceo de las hojas al caer

 

Hunde im Schleudergang

H. Joachim Schlichting. Spektrum der Wissenschaften 9 (2019), S. 58 – 59

Er schüttelt es ab,
wie der Hund den Regen
Karl Simrock (1802 – 1876)

Viele Landtiere trocknen ihr nasses Fell besonders effektiv, indem sie ihren Körper schnell hin und her drehen. Das überträgt große Kräfte auf das anhaftende Wasser, wodurch es zu den Haarspitzen drängt und sich dort rasch ablöst. Weiterlesen

Der Mond bleibt uns stets zugewandt

Kaum jemand wundert sich darüber, dass das „Mondgesicht“ immer dasselbe bleibt. Müsste sich der Mond nicht von allen Seiten zeigen, wenn er sich nicht um sich selbst, sondern nur um die Erde drehte? Und wäre das Problem nicht von gleicher Art, wenn der Mond die Erde umkreisend auch noch um sich selbst rotierte? Denn auch dann wären im Allgemeinen wechselnde Ansichten zu erwarten. Nur in dem Spezialfall, in dem er sich während eines Umlaufs um die Erde auch genau einmal um sich selbst drehte, wäre stets derselbe Anblick zu erwarten. Weiterlesen

Bewegung durch Unschärfe

Ich gebe zu, das Foto ist unscharf. Das war bei dieser Performance und der Aufnahme mit einer Kompaktkamera auch nicht anders zu erwarten. Aber Unschärfe ist ja nicht per se ein Mangel. Viele Fotokünstler nutzen die Unschärfe aus ganz unterschiedlichen Gründen auf kreative Weise aus.
Im vorliegenden Fall ist infolge der spärlichen Beleuchtung mit einer für den bewegten Vorgang zu großen Belichtungszeit fotografiert worden, sodass die schneller steigenden bzw. fallenden Reifen zu einer Verschmierung des Bildteils führen. Darin kann aber auch ein Vorteil gesehen werden, weil die Unschärfe Bewegung suggeriert. Außerdem erhält man daraus zusätzliche Informationen über die Bewegung. So kann man aus den Details des Fotos ableiten, dass der dritte Reifen von unten dicht am Umkehrpunkt ist (vom Steigen zum Fallen oder umgekehrt). Es wurde also fast der Moment getroffen, in dem der Reifen für einen Moment in der Luft steht. Demgegenüber weisen die stark verschmierten Reifen eine verhältnismäßig große Steig- oder Fallgeschwindigkeit auf. Weiterlesen

Rätselfoto des Monats Dezember 2018

Wie kommt es zu diesen Lichtschweifen?

 


Erklärung des Rätselfotos vom Vormonat:

Frage: Warum rotiert die Kugel fast reibungsfrei?
Antwort: Im öffentlichen Raum trifft man oft Kunstwerke in Form von rotierenden Steinkugeln an. Sie sind passgenau in eine sphärische Lagerung eingelassen und werden von einem dünnen Wasserfilm getragen. Dadurch wird die Reibung mit dem Untergrund so stark herabgesetzt, dass die oft tonnenschweren Kugeln mit Hand in Drehung versetzt werden können. Oft behalten sie diese Drehung sehr lange bei, weil sie wegen der großen Masse ein sehr großes Trägheitsmoment besitzen. Daher sind die wegen der geringen Reibung nur geringen Energieverluste kaum zu bemerken.
Das Wasser wird in der Mitte unter der Kugel in den Zwischenraum gepresst und tritt an der oberen Kante der Lagerung wieder aus. Bei den großen Kugeln im öffentlichen Raum ist man meist überrascht, wie gering die ausströmende Wassermenge und wie dünn der Wasserfilm sind. Eine Postkarte lässt sich normalerweise nicht in den Zwischenraum zwängen. Da solche Kugeln oft im öffentlichen Raum stehen, wird dies schon aus Sicherheitsgründen erforderlich, damit Kinder nicht ihre Finger dazwischen stecken können. Dieser geringe Zwischenraum bedeutet, dass die polierten Kugeln äußerst präzise gearbeitet sein müssen. Angesichts dieser Präzision kann man sie trotz der geringen Komplexität und der Gewöhnlichkeit des Materials als High-Tech-Produkte ansehen.
Der Druck, mit dem die Kugel in der Schwebe gehalten wird ist erstaunlich gering. Er wird dadurch aufrechterhalten, dass durch einen Zufluss in der Mitte der Kugelkalotte Wasser in den Zwischenraum gepresst wird. Dieses erzeugt einen Keil zwischen Kugel und Lagerung und trennt beide voneinander.

Rätselfoto des Monats November 2018

Warum rotiert die Kugel fast reibungsfrei? Weiterlesen

Zur konstruktiven Rolle des Fallens

Als ich in einer Dünenlandschaft Sandrippel fotografierte, fiel mir eine runde Objektivschutzkappe aus der Hand und machte sich rollend davon (zum Vergrößern auf Bild klicken). Angetrieben durch den über die Dünen streichenden Wind rollte sie über den welligen Untergrund der Sandrippel und hinterließ eine interessante Spur. Vor die blitzschnell zu entscheidende Alternative gestellt, die Spur zu fotografieren und möglicherweise der Kappe verlustig zu gehen oder die Verfolgung sofort zu starten, entschied ich mich für ersteres. Weiterlesen

Wenn Laub sich abwärts wiegt

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2018), S. 68 – 69


Die Luft umströmt fallende Blätter auf charakteristische Weise. Darum wiederholen sich auf dem Weg zum Boden oft einige typische Bewegungsfiguren.

 

Ein unabsehbar Blättermeer
entperlt dem Netz der Zweige

Christian Morgenstern (1871–1914) Weiterlesen

Schlaffer Faden – straffer Loop

Schlichting, H. Joachim; Suhr, Wilfried. Physik in unserer Zeit 4 (2018) 196-199

Ein zu einer Endlosschleife geschlossener Faden lässt sich in einer Pfeife durch Pusten in einen stabilen Rotationszustand versetzen. Der Luftwiderstand des Fadens erweist sich als wesentlich für den Antrieb und die Stabilisierung des Spielzeugs.

Die Seilschleuder hat durch die zunehmende Verbreitung von Science Centern in den letzten Jahren eine gewisse Bekanntheit erlangt. Sie beeindruckt vor allem dadurch, dass ein zu einer Schlaufe verknüpftes Seil in eine stationäre Rotationsbewegung gebracht werden kann, wobei das Seil durch innere Zugkräfte versteift und stabilisiert wird (Physik in unserer Zeit 2018, 49 (2), 80). Weiterlesen

Wirbel in der Teetasse

Schlichting, H. Joachim. Spektrum der Wissenschaft 6 (2018), S. 62 – 63

Subtile spiralförmige Strömungen in umgerührtem Tee schichten darin verbliebene Blattstücke zu einem kleinen Häufchen in der Mitte des Tassenbodens auf.  Weiterlesen

Was bleibt vom Fidget-Kreisel?

Der Hype mit dem Fidgetkreisel ist weitgehend vorbei. Man wischt sich die Augen und fragt: War das alles? Oder etwas konstruktiver: Was bleibt? Eines bleibt auf jeden Fall; das ist die Idee, einen Kreisel mit einem Kugellager zu versehen. Weiterlesen

Fontänen und Loopings am laufenden Band

Suhr, Wilfried; Schlichting, H. Joachim.  Physik in unserer Zeit 49/2 (2018) S. 80 – 85

Modellierung einer Seilschleuder

Versetzt man ein geschlossenes Seil in Rotation, so richtet es sich zu einer fontänenartigen Bewegungsfigur auf. Mit zunehmender Umlaufgeschwindigkeit geht diese durch einen phasenübergangsähnlichen Wechsel in einen geschlossenen Loop über. Dabei übernimmt die Dissipation der Bewegungsenergie eine konstruktive Rolle. Weiterlesen

Vom realen zum freien Fall: Annäherungen – Fall 8

Im ersten Fall lässt man einen Papierstreifen, am besten in Form einer Spielkarte etwa aus Kopfhöhe fallen. Sie fällt meist nicht in vorhersagbarer Weise, sondern geht Kapriolen schlagend zu Boden und landet in einiger Entfernung vom Fußpunkt des Startpunkts.
Im zweiten Fall, lässt man die Karte senkrecht ausgerichtet fallen (siehe obere Abbildung, man blickt auf die kurze Stirnseite der Karte). Sie geht mit großer Wahrscheinlichkeit nach einer kurzen senkrechten Fallstrecke in eine gleichmäßige Drehbewegung um die horizontale Achse über und landet in einer bestimmten Entfernung links oder rechts vom Startpunkt. Diese Situation ist schematisch in der oberen Abbildung zu sehen, in der die Positionen der fallenden Karte in sehr kurzen, konstanten Zeitabständen dargestellt ist.
Dass die Entfernung des Landepunkts von dem Fußpunkt des Starts stets in etwa dieselbe ist und es vom Zufall abhängt, ob die Karte links oder rechts landet, erfährt man, wenn zahlreiche Karten auf die gleiche Weise fallengelassen werden. Es entstehen schließlich zwei gleich weit vom Startpunkt entfernte Kartenhäufchen, deren Anzahl im Idealfall sich umso mehr angleicht, je mehr Karten fallengelassen werden. Weiterlesen

Ein irritierend rotierender Globus

Ucke, Christian; Schlichting, H. Joachim. Physik in unserer Zeit 42/5 (2017), S. 246 – 250

Ein auf einem feststehenden Dreibein befindlicher Globus dreht sich lautlos und scheinbar ohne äußere Energiezufuhr. Dahinter steckt eine ingeniöse Kombination von Hightech- Materialien und Geräten mit bekannten mechanischen und optischen Effekten, die sich erst nach und nach erschließt. Weiterlesen

Worum dreht es sich?

rotierender-sternenhimmel_rvWenn ich dieses Foto sehe, werde ich unwillkürlich an ein Erlebnis aus der Kindheit erinnert, das mich schlagartig davon überzeugte, dass die Behauptung zutreffen könnte, die Erde drehe sich um die Sonne und nicht umgekehrt. Ich saß in der Eisenbahn und wartete auf die Abfahrt. Dann ging es endlich los bis ich plötzlich sah, dass sich der Zug auf dem Nachbargleis in Bewegung gesetzt hatte und wir immer noch im Bahnhof standen. In diesem Moment erlebte ich gewissermaßen körperlich, dass Bewegungen relativ sind und der Augenschein oft nicht ausreicht festzustellen, was sich „wirklich“ bewegt. Man braucht schon weitere überzeugende Hinweise. Weiterlesen

Das unermüdliche Maxwell-Rad

Maxwell RadUcke, Christian; Schlichting, H. Joachim. Physik in unserer Zeit 46/1 (2015) 40 – 43

Sisyphus musste bekanntlich einen Stein mühsam bergauf bewegen, der dann immer wieder hinunter rollte. Das bekannte Maxwellsche Rad bereitet vielen Physikstudenten in intellektueller Hinsicht ähnliche Mühe. Es gibt jedoch kreative und unterhaltsame Variationen dieses Klassikers.

(ein Video Maxwellrad sowie ein weiterführender Text zur quantitativen Analyse finden sich auf http://www.phiuz.de Special Features/Zusatzmaterial zu den Heften).

PDF kann beim Autor angefordert werden (schlichting@uni-muenster.de)

Streng geheim – Der ewige Kreisel

Ewiger KreiselUcke, Christian; Schlichting, H. Joachim. Physik in unserer Zeit 45/6 (2014) 284 – 287

Es wäre schön, wenn ein einmal angedrehter Kreisel nie mehr aufhören würde sich zu drehen. Solche „ewigen Kreisel“ gibt es tatsächlich. Sie verfügen über eine externe Energiezufuhr oder eingebaute Energiequelle, die eine Laufzeit von mehreren Stunden oder Tagen erlaubt. Ewig laufen sie natürlich nicht.

PDF: Streng geheim – Der eweige Kreisel (Einreichversion)

Achtung Aquaplaning

GranitkugelSchlichting, H. Joachim. In: Physik in unserer Zeit 4 (2014), S. 202 – 203

Große rotierende Granitkugeln im öffentlichen Raum sind entgegen allem Anschein High-Tech-Produkte. Sie driften auf einem sehr dünnen Wasserfilm. Die Kugel muss daher äußerst präzise gearbeitet sein.

Rotierende Kugeln aus Granit und anderen Materialien trifft man im Großen wie im Kleinen als Kunstwerke und Designobjekte an, vor allem in privaten und öffentlichen Gärten und Gebäuden. Sie sind passgenau in eine sphärische Lagerung eingelassen und werden von einem dünnen Wasserfilm getragen. Das Wasser wird in der Mitte unter der Kugel in den Zwischenraum gepresst und tritt an der oberen Kante der Lagerung wieder aus. Bei den großen Kugeln im öffentlichen Raum ist man meist überrascht, wie gering die ausströmende Wassermenge ist. Die Kugeln können auf diese Weise fast reibungsfrei auf dem Wasserfilm rotieren, was besonders eindrucksvoll bei großen Exemplaren mit einem Durchmesser von rund einem Meter und einem Gewicht von mehr als einer Tonne ist. Mit geringer Anstrengung in die lassen sie sich beliebig drehen. Weiterlesen

Manchmal hilft nur Trägheit

Clip_144Schlichting, H. Joachim, Ucke, Christian: In: Physik in unerer Zeit 44/5 (2013), S. 240-242

Was auf den ersten Blick wie ein simples Geduldsspiel erscheint, ist in Wirklichkeit ein raffiniertes physikalisches Spielzeug: die Kugelwippe. Was mit Geduld nur sehr schwer zu erreichen ist, gelingt mit einem physikalischen Trick.

PDF: Kann beim Autor angefordert werden.

The buzzer – A novel physical perspective on a classical toy

Schlichting, H. Joachim; Suhr, Wilfried. In: Eur. J. Phys. 31 (2010) 501-510

We present a physically interesting toy, which is easily constructed and operated – the so-called buzzer. In spite of its simplicity, its physical analysis turns out to be rather complex. Thus, it comes as no surprise that most of its users are not familiar with the underlying physical mechanism. In this paper we propose a physical model which allows for the qualitative and quantitative description of the fundamental physical properties of the buzzer and report on the good agreement between theoretical and experimental data. The model is designed to give a basis for further simplification.

Faszinierendes Dynabee

Schlichting, H. Joachim; Ucke, Christian. In: Physik in unserer Zeit 33/5, 230-231 (2002).

Ein kleiner Kreisel, der in einem kugelförmigen Plastikgehäuse rotiert, kann in der Hand durch eine geschickte Taumelbewegung des Gehäuses auf sehr hohe Drehzahlen beschleunigt werden. Das macht das eigentlich zum Training der Arm- und Handgelenkmuskeln entwickelte Gerät auch für Physiker interessant.

PDF: kann beim Autor angefordert werden (schlichting@uni-muenster.de)

Wobbler, Torkler oder Zwei-Scheiben-Roller

Ucke, Christian; Schlichting, H. Joachim. In: Physik in unserer Zeit 25/3, 127 (1994).

Neben der Kugel und dem Zylinder gibt es weitere Objekte, die beim Rollen einen konstanten Abstand von der Unterlage beibehalten. Sie haben zwar keine unmittelbare Nutzenanwendung, regen aber zum Nachbau und zu allerlei mathematisch-physikalischen Überlegungen an.

PDF: Wobbler, Torkler oder Zwei-Scheiben-Roller

Der Flug des geflügelten Samens

Schlichting, H. Joachim; Ucke, Christian. In: Physik in unserer Zeit 25/2, 79 (1994).

Zahlreiche Pflanzensamen sind mit besonderen Einrichtungen zum passiven Fliegen ausgestattet, um eine möglichst großräumige Ausbreitung der Arten zu gewährleisten. Unter den verschiedenen Flugeinrichtungen fallen vor allem der Ahornsamen und ähnlich konstruierte Schraubenflieger durch ihren ästhetisch ansprechenden Sinkflug auf.

PDF: Der Flug des geflügelten Samens

Der gebremste Fall – eine physikalische Entzauberung

Schlichting, H. Joachim. In: Erschienen in: Physik in der Schule 31/10, 342, (1993)

Was passiert, wenn man ein Schlüsselbund in der im Bild dargestellten Weise an einem über einen Stab gelegten Faden hält, und dann losläßt?
Die übliche Erwartung ist, dass das Schlüsselbund zu Boden fällt. Dabei wird unterstellt, dass der Einfluß des im Vergleich zum Schlüsselbund leichten Streichholzheftchens zu vernachlässigen ist.

Der Gebremste Fall

Warum „schwirrt“ die Scheibe? Physikalische Aspekte eines interessanten Spielzeugs

Schlichting, H. Joachim. Physik in der Schule 31/5, 179, (1993).

Manche Spielzeuge sind Alltagsgegenstände, die einer Spielidee entsprechend benutzt werden. Man denke etwa an Dosendeckel oder andere Scheiben, mit denen schon wie mit einem Frisbee gespielt wurde, als es Frisbees noch gar nicht gab. Der Frisbee ist ein gutes Beispiel dafür, dass kommerzielle Spielzeuge häufig nur eine verbesserte Version längs bekannter Alltagsspielzeuge darstellen.

PDF: Warum „schwirrt“ die Scheibe? Physikalische Aspekte eines interessanten Spielzeugs

Schleuderball

Schlichting, H. Joachim. In: Naturwissenschaften im Unterricht – Physik 3/12, 18 (1992).

Obwohl Schüler i.a. Erfahrungen mit geschleuderten bzw. an einer Schnur herumgewirbelten Gegenständen haben, erscheint ihnen meiner Erfahrung nach der Umlauf auf der Kreisbahn als ungezwungene, sich selbst erhaltende, natürliche Bewegung. Hier zeigt sich einmal mehr, daß bestimmte lebensweltliche Sehweisen physikalischen Ideen der aristotelischen Physik ähnlich sind. Im Rahmen der neuzeitlichen Physik wird die Kreisbahn jedoch nicht mehr als einfach angesehen. Die gerade Linie ist hier das bestimmende Paradigma. Die Kreisbahn muß man sich als „gewaltsam“ aus der geraden Linie hervorgebracht denken. Das intuitive Festhalten an der als überwunden geglaubten aristotelischen Auffassung mag Ausdruck der Tatsache sein, daß
das intuitive Erfassen der „vollkommenen“ Gestalt des Kreises dem lebensweltlichen Denken näher ist als der analytische Zugang über die Dynamik der Kreisbewegung…

PDF: Schleuderball

Kreiselphänomene

Schlichting, H. Joachim. In: Praxis der Naturwissenschaft- Physik 41/2, 11 (1992).

Es wird ein altbekanntes Spielzeug erinnert, das nicht nur in spielerischer sondern auch in physikalischer Hinsicht auf vielfältige Weise interessant ist: an den Kreisel. Dabei geht es zum einen um eine Beschreibung der wichtigsten Phänomene, die vom Kreisel hervorgebracht werden, sowie um eine elementare Darstellung der diesen Phänomenen zugrundeliegenden physikalischen Prinzipien. Zum anderen soll ein Überblick über die verschiedenen Aspekte gegeben werden, die den Kreisel für den Physikunterricht interessant machen. Durch ausführliche Literaturhinweise erhält der Leser die Möglichkeit zu einer Vertiefung des einen oder anderen Aspektes.

PDF: Kreiselphänomene

Allerlei Reiberei – Freihandexperimente mit Magnetkreisel

Schlichting, H. Joachim. In: Praxis der Naturwissenschaften- Physik 41/2, 9 (1992).

Magnetkreisel sind Kreisel, deren Achse magnetisch ist. Entweder ist die Kreiselachse selbst ein dünner Stabmagnet, oder die Kreiselscheibe besteht aus einem Ringmagneten, (seine Pole liegen auf der Symmetrieachse), durch dessen Loch ein Eisenstab als Achse gesteckt wird . Ein solcher Kreisel vermag überraschende Phänomene hervorzubringen, wenn man ihn mit Eisengegenständen wechselwirken läßt.

PDF: Allerlei Reiberei – Freihandexperimente mit Magnetkreisel

Geduld oder Physik – ein einfaches Spielzeug mit physikalischen Aspekten

Schlichting, H. Joachim. In: Praxis der Naturwissenschaften- Physik 41/2, 5 (1992).

Die so genannte Kugelwippe (siehe Abb. 1) wird als Geduldspiel bzw. Puzzle vertrieben[1]. Sie läßt sich aber auch leicht selbst herstellen[2]. Die Spielaufgabe besteht darin, die beiden Kugeln, die sich normalerweise im Minimum der Mulde befinden, in die beiden Nischen am rechten und linken oberen Rand der Wippe zu befördern. Versucht man, das Problem auf die zunächst naheliegend erscheinende Art zu lösen, durch Neigen der Wippe zuerst die eine Kugel und dann auf dieselbe Weise die andere Kugel in die jeweilige Nische zu bringen, dann wird man je nach Länge des jeweiligen Geduldsfadens früher oder später
feststellen, daß es so nicht geht. Denn gemeinerweise rollt die bereits am Zielpunkt fixierte Kugel unweigerlich wieder aus der kleinen Vertiefung heraus, wenn man anschließend die Wippe zur anderen Seite neigt, um auch die zweite Kugel ins Ziel zu bringen. Weiterlesen

Photoarchiv