Wenn man durch die Bergwelt Gran Canarias fährt oder gar wandert, fallen u.a. die Serpentinen auf, die sich an den Bergen entlang schlängeln. Das Schlangenhafte liegt auch dem Wort Serpentine zugrunde und ist sicherlich das auffälligste Merkmal, insbesondere dann wenn man die endlos erscheinende Kurverei selbst durchmacht. Von oben sieht dann alles sehr friedlich aus, auch deshalb weil man endlich oben ist.
Der Sinn des Schlängelns liegt in der Verringerung der Steigungen, was nur mit einer Verlängerung des Weges zu erreichen ist. Dadurch wird die zur Überwindung der Steigung aufzubringende Kraft reduziert, denn man muss pro Streckeabscnitt, also beim Gehen pro Schritt eine geringere Höhe überwinden. Das kommt sowohl dem Wanderer als auch den vornehmlich für die flache und nicht für die schiefe Ebene konstruierten Fahrzeugen zugute.
Physikalisch gesehen gehört eine solche schiefe Ebene zu den einfachen Maschinen. Dabei geht man im Idealfall davon aus, dass die aufzuwendende Energie unverändert bleibt: Die Kraftersparnis wird gewissermaßen durch eine Wegverlängerung erkauft.
Das bezieht sich allerdings nur auf die Höhenenergie. Denn zur Fortbewegung auf einer Straße ist zur Überwindung der Reibung ebenfalls Energie aufzuwenden und die ist natürlich umso größer, je länger die Straße ist.
Beim Wandern im Gebirge sieht man manchmal „wilde“ Abkürzungen zwischen zwei Windungen einer Serpentine. Sie zeugen davon, dass einige Wanderer den Weg verkürzen wollen. Sie machen sich dabei aber oft nicht klar, dass der Kraftaufwand entsprechend größer wird und sich à la longue in körperlicher Erschöpfung äußern kann, bevor das Ziel erreicht ist.
Wenn alle Körper gleich schnell fallen, dann genügt die Untersuchung eines einzigen Gegenstands um festzustellen, wie schnell etwas fällt. Schon die Erfahrung, daß ein aus größerer Höhe fallendes Objekt gefährlicher ist als eines, das aus niedrigerer Höhe fällt, zeigt, daß die Geschwindigkeit während des Falls zunehmen muß. Die Frage, in welchem Maße sie zunimmt, war zur Zeit Galileis eine große Herausforderung. Denn der freie Fall ist normalerweise mit Geschwindigkeiten verbunden, die jenseits des menschlichen Reaktionsvermögens liegen. Außerdem standen Galilei keine geeigneten Uhren zur Verfügung.
Ein weiterer großer Einfall, der ebenfalls zum Meilenstein für die neuzeitliche Physik und zum weiteren Problemfall für das Lehren und Lernen von Physik werden sollte, kam Galilei in dieser Situation zur Hilfe. Er fand wesentliche quantitative Aussagen zum Fallgesetz durch Kugeln, die er eine schiefe Ebene herunterrollen ließ (siehe Foto). Mit der schiefen Ebene gelingt es ihm den „Fall“ so zu verlangsamen, daß der eigene Pulsschlag oder das ausfließende Wasser einer Wasseruhr ausreicht, die Geschwindigkeitsänderungen pro Zeiteinheit zu messen. Er arbeitet also mit einer Art Zeitlupe, indem er von der physikalisch falschen, für eine qualitative Bestätigung der Erwartung aber brauchbaren Voraussetzung ausgeht, daß das Fallen durch Rollen ersetzt werden könne.
Durch Verkleinerung der Neigung der Ebene schuf Galilei eine Situation, die der virtuellen Verminderung der Stärke der Gravitationskraft gleichkommt. Die schiefe Ebene gehört damit zur großen Ahnenreihe paradigmatischer Geräte: „Die schiefe Fläche des Galilei, der Perpendikel des Huygens, die Quecksilberröhre des Torricelli, die Luftpumpe des Otto Guericke, und das gläserne Prisma des Newton haben uns den Schlüssel zu großen Naturgeheimnissen gegeben“ (Immanuel Kant. Versuch den Begriff der negativen Größen in die Weltweisheit einzuführen 1968).
Foto: Schiefe Ebene des Galileo Galilei im Museo de storia della scienca in Florenz.
Vermutlich haben diese Häuslebauer sogar mit einem Lot gearbeitet. Aber da sich ein Lot immer in Richtung der größten Gravitation, der stärksten Anziehungskraft zuwendet, muss in der Nähe irgendeine Gravitationsanomalie herrschen. Schön angemalt haben sie ihr schiefes Bauwerk trotzdem.
Die Aufnahme entstand in Santa Cruz de la Palma.
Die schiefe Ebene spielt in der neuzeitlichen Physik insofern eine wichtige Rolle, als sie die Idee des an die Senkrechte gebundenen freien Falls mit der waagerechten Ebene durch einen kontinuierlichen Übergang zu verknüpfen gestattet. Galileo Galilei war wohl der erste, dem es mit seinen eine schiefe Rinne hinab rollenden Kugeln gelang, den zu seiner Zeit auf andere Weise kaum messend zu erfassenden freien Fall auf ein experimentell zugängliches Maß zu reduzieren und damit quantitativ zu erschließen.
Mögliche Motive und Ursprünge für diese geniale Idee findet man in den folgenden Ausführungen des Philosophen der Aufklärung Moses Mendelssohn (1729 – 1786). Er zeigt außerdem die aus physikalischer Sicht gegebene Verbindung zum Gesetz der Schwere und Werkzeugen wie der Schraube und dem Keil, sodass die Schiefe Ebene implizit auch als ein Archetyp der neuzeitlichen Physik ausgewiesen wird. Weiterlesen
Ucke, Christian; Schlichting, H. Joachim. In: Physik in unserer Zeit 43/6 (2012), S. 296 – 299
Lauftiere wackeln eine schiefe Ebene hinunter. Schon Kleinkinder sind fasziniert von diesem über hundert Jahre alten Spielzeug. Ingenieure beschäftigen sich aktuell damit, da sich mit dem dahinter stehenden Prinzip überraschend energiesparende Konstruktionen von Laufrobotern realisieren lassen.