//
Artikel Archiv

Schwerkraft

Diese Schlagwort ist 29 Beiträgen zugeordnet

Wie man Seifenblasen am Platzen hindert

Vorboten des Platzens: Die runden, dunklen Bereiche gehen teilweise von Keimen aus und werden immer größer. Sie kennzeichnen Stellen, die dünner sind als die Wellenlängen des sichtbaren Lichts.

Die Dauer – eine noch einzuführende Wissenschaft

Paul Valéry (1871 – 1945)

Die schillernden Kugeln üben eine große Faszination aus: wegen ihrer Farbspiele, aber auch ihrer meist sehr kurzen Lebensdauer. Doch diese lässt sich mit ein paar Tricks auf über ein Jahr verlängern!

Wenn man sagt, Träume zerplatzen wie Seifenblasen, wird die Vergänglichkeit dieser fragilen Objekte sprichwörtlich. Bei den menschlichen Bemühungen, Träume wahr werden zu lassen und Seifenblasen ein längeres Leben einzuhauchen, gibt es zumindest beim letzteren Punkt bemerkenswerte Fortschritte.

Physikalisch gesehen ist eine Seifenblase ein kugelförmiger Flüssigkeitsfilm, der mit einem Gas gefüllt ist, normalerweise Luft. Wie man an den prachtvollen Interferenzfarben direkt erkennen kann, ist die Wand einer solchen Blase äußerst dünn. Denn das bunte Schillern bedeutet, dass bei den Lichtwellen, die an der Außen- und Innenseite des Films reflektiert werden und sich dann überlagern, einzelne Farben ausgelöscht und andere verstärkt werden. Das ist aber nur bei einer Wanddicke möglich, die in der Größenordnung der Wellenlängen des sichtbaren Lichts liegt, also unterhalb eines tausendstel Millimeters.

Auf die filigrane Seifenhaut wirkt gleich nach ihrer Entstehung die Schwerkraft ein. Infolgedessen rinnt Flüssigkeit auf Grund ihres eigenen Gewichts langsam die Wand hinunter. Dadurch wird diese im oberen Bereich immer dünner. Zuweilen zeigt sich die Umverteilung an einem wachsenden Tropfen am unteren Ende.

Die Beobachtung, dass die Erdanziehung die Lebensdauer der Blasen maßgeblich verkürzt, wird durch Experimente in der internationalen Raumstation ISS untermauert. In der dortigen Schwerelosigkeit existieren die Gebilde länger als bei ansonsten vergleichbaren Bedingungen auf der Erde.

Interferenzringe: Bei einer Seifenblase auf einem feuchten Blatt weisen kreisförmige Farbverläufe darauf hin, wie sich die Seifenhaut nach oben hin durch die Schwerkraft zunehmend verdünnt hat.

Zusätzlich zur Gravitation setzen den Seifenblasen weitere Vorgänge zu. So verdunstet mehr oder weniger Flüssigkeit aus der Wand, je nach den herrschenden meteorologischen Bedingungen. Bei hoher Luftfeuchte halten sich die Blasen länger als bei strahlendem Sonnenschein. Die lebensverlängernde Wirkung lässt sich bei Nieselwetter besonders gut beobachten. Nicht nur nimmt die Verdunstungsrate ab – vermutlich werden sogar die Wasserdampfverluste durch auftreffende winzige Wassertröpfchen teilweise kompensiert.

Die Blase ist außerdem äußeren Störungen unterworfen, beispielsweise durch Luftbewegungen. Diese lassen die Wandstärke schwanken und provozieren Ausgleichsströmungen, die in schillernden Schlieren ihren sichtbaren Ausdruck finden. Wenn das die Blase nicht schon vorher hat platzen lassen, beobachtet man gegen Ende ihrer Lebenszeit, wie von oben beginnend die Farben sukzessive verschwinden. Dann ist die Filmdicke geringer als die Wellenlängen des sichtbaren Lichts, und unterhalb von einigen zehn Nanometern steht das Ende der Blase unmittelbar bevor.

Die unmittelbarste Bedrohung der schwebenden Sphären ist eine äußere Berührung, sei es von Staub oder durch die Hand eines spielenden Kindes. Solche Kontakte fungieren als so genannte Nukleationskeime, die oft rasend schnell zu einem Loch in der Blase und somit zum Platzen führen. Manchmal genügen bereits Inhomogenitäten der Seifenkonzentration als Auslöser. Berührungen erfolgen in vielen Fällen mit benetzbaren (hydrophilen) Gegenständen. Sie entziehen der dünnen Wand punktuell sehr viel Flüssigkeit, die nicht schnell genug durch Ausgleichsströmungen ersetzt werden kann. Das muss nicht immer so sein: Auf regennassen Blättern bleiben Seifenblasen liegen, ohne zu zerspringen.

Unterschiedliche Maßnahmen können das Leben der Gebilde verlängern. Straßenkünstler haben sich Rezepte für Seifenblasen erarbeitet, die zumindest einige Minuten überstehen. Solche Erfolge haben Aymeric Roux, Alexis Duchesne und Michael Baudoin von der Université Lille im Jahr 2022 allerdings weit in den Schatten gestellt: Den drei französischen Physikern gelang es, Blasen mit einer Lebensdauer von bis zu 465 Tagen herzustellen.

Farbverläufe: Infolge lokal variierender Verdunstungsraten entstehen Ausgleichsströmungen auf der Blase. Das sorgt für unterschiedliche Wandstärken, die als bunte Schlieren zum Ausdruck kommen

Dabei haben die Forscher die destruktiven Prozesse in der Seifenblase systematisch beseitigt. Sie unterbanden ein Herunterrinnen der Flüssigkeit in der Wand, indem sie der Lauge winzige Plastikteilchen mit einem Durchmesser von etwa einem zehntel Millimeter zufügten. Die hydrophilen Partikel umgeben sich mit der Flüssigkeit und werden von dieser mit in die Kugelform gezwungen. Der Effekt ähnelt dem Verhalten von trockenen Sandkörnern, die durch Zugabe von Wasser zu dauerhaften Sandburgen gestaltet werden können: Dort hält die Feuchtigkeit die Körner in Form, und der Sand hindert durch seine Hydrophilie das Wasser am Abfließen. Bei der Blase verfestigen die Kügelchen zudem das Gebilde und machen es unempfindlich gegen Berührungen und andere Quellen von Nukleationskeimen.

Wie man aber von einer Sandburg weiß, verhindert die Bindung des Wassers an den Körnern nicht dessen Verdunstung. Jedes Strandkunstwerk zerfällt irgendwann, wenn man den Sand nicht ständig befeuchtet.

Um dem Wasserverlust in den Blasen vorzubeugen, haben die Forscher ihrer Mixtur Glyzerin zugegeben. Dabei handelt es sich um eine hygroskopische Substanz, das heißt, sie kann Wasserdampfmoleküle aus der Umgebung aufnehmen und damit der Verdunstung entgegenwirken. Das funktioniert umso effektiver, je größer die Dampfkonzentration in der umgebenden Luft ist. Durch eine passende Dosierung sorgte das Team für Ausgewogenheit zwischen dem Wasserverlust durch Verdunstung und der Absorption durch das Glyzerin in der Wand. Damit konnte die Blase nicht mehr austrocknen.

Die verschiedenen Komponenten und Vorgänge in den dergestalt präparierten Blasen waren so gut ausbalanciert, dass ein Exemplar 465 Tage durchhielt. Der Rekord steht allerdings in einem ernüchternden Kontrast zu den Eigenschaften, die wir gemeinhin mit einer Seifenblase verbinden – sie alle fehlten hier. Weder schwebte die Sphäre, noch spiegelte sie oder schillerte farbenprächtig, sondern sie lag auf dem Untergrund wie die weißliche Kuppel einer Radarstation. Am Schluss platzte sie nicht spektakulär, sondern fiel kraftlos in sich zusammen. Dazu, woran sie schließlich doch noch zu Grunde gegangen ist, können die drei Wissenschaftler nur Vermutungen anstellen. Sie verdächtigen Kolonien von Mikroorganismen, die sich im Flüssigkeitsfilm entwickelten und das sorgfältig austarierte Gleichgewicht schließlich zerstörten.

Quelle

Roux, A. et al.: Everlasting bubbles and liquid films resisting drainage, evaporation, and nuclei-induced bursting. Physical Review Fluids 7, 2022

Werbung

Es sind nur Tropfen…

Um die Schönheit solcher Tropfen genießen zu können, muss man sich auf das Niveau der Grashalme herablassen. Weil die Kamera oder das Auge den Tropfen in den Fokus nimmt, verschwimmt die Welt dahinter in einem Einerlei von Grüntönen. Aber die Strukturen gehen einem nicht ganz verloren, weil der Tropfen zumindest einen Teil des aus dieser Hinterwelt kommenden Lichts wie eine Lupe fokussiert und auf diese Weise die schon dem Blick verloren geglaubten Gräser mit einiger Schärfe wieder rekonstruiert. Das Ergebnis eines solchen Wechsels zwischen scharf und unscharf ist vermutlich ein weiteres ästhetisches Detail, das vielleicht unbewusst zur Schönheit des Gesamteindrucks beiträgt.
Es gibt aber auch noch kleinere Tropfen, die selbst in dieser Vergrößerung nicht mehr in allen Details zu erkennen sind. Sie kommen aber dem Ideal einer Kugel näher als die größeren.
Wieso sind kugelförmige Tropfen ein Ideal? Eine Antwort auf die Frage sind physikalische Prinzipien, denen sich auch die winzigen und daher kaum bemerkten Tropfen nicht entziehen können.
Die Wassertropfen stehen gewissermaßen unter dem Zwang die Kugelgestalt anzunehmen, weil das Volumen einer Portion Materie in Form einer Kugel von der kleinstmöglichen Oberfläche begrenzt wird. Damit wäre aber auch die zur Oberfläche proportionale Oberflächenenergie minimal. Und da jedes (abgeschlossene) System auf dieser unserer Welt so beschaffen ist, dass es so viel Energie wie unter den jeweils gegebenen Umständen möglich an die Umgebung abgibt, wäre damit diesem sogenannten Entropieprinzip Genüge getan.
Aber ein Tropfen ist nicht allein auf dieser Welt, er unterliegt folglich äußeren Einflüssen, die eine ideale Kugelgestalt der Wassertropfen unmöglich machen. Wir sehen also im Grunde so etwas wie energetische Kompromisse – aber sie sind es, die die Welt vielfältig, anregend und schön erscheinen lassen.

Strukturbildung beim Wasserfall

Alle Gegenstände und Medien, also auch Wasser, tendieren dazu die unter den gegebenen Umständen mögliche tiefste Lage einzunehmen. Dahinter steckt das natürliche Prinzip (2. Hauptsatz der Thermodynamik), soviel Energie wie möglich an die Umgebung abzugeben. Das Ergebnis wäre eine ebene Wasseroberfläche. Aber dazu kommt es im vorliegenden Fall gar nicht erst, weil der Behälter eine Öffnung hat, durch die das Wasser der gleichen Tendenz folgend in das nächst tiefere Becken fällt.
Aber selbst beim Fallen des Wassers gibt es eine Möglichkeit, Energie an die Umgebung abzugeben, indem die Oberfläche, zu deren Ausbildung verhältnismäßig viel Energie nötig ist, verkleinert wird. Doch auch dieser Prozess bleibt im Ansatz stecken, denn inzwischen hat das Wasser ein noch tieferes Becken erreicht.
Aber man kann immerhin erkennen, dass die fallende Schicht sich nach unten hin zusammenzieht mit der Tendenz Zylinderform anzunehmen. (Auch dazu würde es nicht kommen, wie ich in einem früheren Beitrag gezeigt habe).
Der nahezu freie Fall der Wasserschicht wird modifiziert durch Einflüsse der Ränder. Die sich beim schrägen Anstrom auf die Öffnungen aufwölbenden Wasserströme tendieren dazu, aus Trägheit ihre Richtung beizubehalten und führen in der unteren größeren Schale dazu, sich zu überkreuzen bevor sie abermals gestoppt werden und sich im Becken verwirbelnd zur nächsten Öffnung bewegen. Alle diese Vorgänge werden durch individuelle Einflüsse von Unregelmäßigkeiten an den Rändern u.Ä. überlagert und entsprechend modifiziert. Auf diese Weise entstehen naturschöne Wasserstrukturen.

Reflektierende Tropfen

Normalerweise kennt man Wassertropfen als etwas plattgedrückte Kugeln, wenn sie beispielsweise auf einer ebenen Fläche hausen. Die Schwerkraft und die Oberflächenkraft machen ihnen zu schaffen, ihrer wahren Haltung als Tropfen gerecht zu werden. Aber auch der umgekehrte Fall, wenn sie durch die Schwerkraft etwas in die Länge gezogen werden, ist nicht ideal, weil präkar (siehe Foto). Denn es fehlt nicht viel und die Oberflächenkraft reicht nicht mehr aus, ihr zunehmendes Gewicht (durch Anlagerung von Wasserdampfmolekülen) zu kompensieren. Der nasse Boden zeigt, was ihren vorausgegangenen Kollegen passiert ist und auch ihnen in Kürze bevorsteht. Aber solange sie können, reflektieren sie (über) ihre Umgebung und lassen uns daran teilhaben.

Eine kleine Epiphanie im Alltag

Beim Blick durch eine spiegelnde und daher den Blick verwirrende Schaufensterscheibe in einen leeren Innenraum war ich im ersten Moment der Meinung, hier würde ein neuer Bodenbelag verlegt. Und ich war gerade dabei zu denken, dass dies eine tolle Idee sei, das für die Arbeit zwar notwendige aber zumindest beim Verlegen der letzten Quadratmeter auch massiv störende Subjekt durch Ausweichen in die zum Boden orthogonale dritte Dimension aus dem Weg zu schaffen, bis zwei weitere Gedanken diesen Gedanken konterkarierten.
Erstens: Man geht nicht so ohne weiteres die Wände hoch, jedenfalls nicht, wenn man nicht gerade provoziert wird. Ansonsten müsste man schon ein Kraftpaket sein, um den ganzen Körper so lässig mit einer Hand zu stemmen.
Zweitens: Die Person, die hier dieses Kunststück vollbringt, sieht so merkwürdig monochrom aus, so als wäre sie nicht von dieser Welt, sondern künstl(er)i(s)chen Ursprungs. Mit anderen Worten: Hier hatten sich kurzfristig zwei inkommensurable Sphären überlagert – die Wirklichkeit eines ganz gewöhnlichen Tages mit der Kunstwelt, die sich in ihren kühnen Konstruktionen locker über physikalische Einschränkungen hinwegsetzte.
Das brachte mich sofort auf den Boden der Tatsachen zurück mit der unvermeidlichen Einsicht, dass man beim Verlegen eines Bodenbelags wohl doch besser auf dem Boden der Tatsachen bleiben sollte, auch wenn diese noch so bodenständig sind.

Schnee ist leicht aber anhänglich

Eine Bank neigt sich unter der Belastung des Schnees zur Seite. Das ist natürlich eine Ausrede. In Wirklichkeit waren einige kompakte Männer die Ursache, die sich am Vatertag hier niedergelassen hatten. Denn der Schnee wiegt nicht viel, weil es einen mehr oder weniger großen Teil Luft enthält.

SchneeartDichte [kg/m3]
trockener Pulverschnee30–50
normaler Neuschnee50–100
feuchter Neuschnee100–200
trockener Altschnee200–400
feuchter Altschnee300–500
Firn500–800
Dichte verschiedener Schneearten

Wie die Tabelle zeigt ist selbst der kompakteste Schnee noch wesentlich leichter (geringere Dichte) als flüssiges Wasser. Andererseits weiß man, dass Gebäude mit großem Flachdach und selbst Bäume bei starkem Schneefall gefährdet sind unter der Schneelast zusammenzubrechen. Als Wasser wären diese Massen kein Problem. Denn während dieses sofort die tiefste Stelle aufsucht und abfließt, kann Schnee je nach Beschaffenheit zusammenbacken und sich hoch auftürmen. Nicht nur horizontale Flächen sind davon betroffen, auch an vertikalen Strukturen, Stromleitungen u.Ä. können erstaunlich große Schneemassen anhaften.

Regentropfen auf der Achterbahn

Es lohnt sich im leichten Nieselregen die Tropfenbildung auf Blättern und Trieben zu beobachten. Wasserliebende (hydrophile) Pflanzen halten die winzigen Tröpfchen zunächst durch die Adhäsionskraft fest. Da sich Wassertröpfchen selbst am meisten lieben, fließen benachbarte Tröpfchen zusammen und bilden größere Tropfen. Je größer/schwerer der Tropfen, desto mehr macht sich die Schwerkraft bemerkbar. Das führt dann dazu, dass die Tropfen sich schließlich in Bewegung setzen und sich in Richtung tiefster Stelle bewegen. Dort bleiben sie meist nicht lange, weil sie weiter wachsen, bis die Schwerkraft die Adhäsionskraft überwindet und die Tropfen zu Fall bringt. Vorher bilden sie aber die Umgebung ihrer Kleinheit entsprechend en miniature ab.

Abbildung einer Linse aus Wasser

Wenn Wasser sich zum Beispiel an/auf dem Teil einer wasserliebenden Pflanze sammelt, bildet es einen Tropfen, um die Oberfläche so klein wie möglich zu machen. Der Tropfen wird von den meisten Blättern bis zu einer bestimmten Größe „gehalten“, weil die Grenzfläche mit dem Blatt weniger Energie erfordert als mit der Luft. Doch die Schwerkraft ist allenthalben wirksam. Je größer der Tropfen und damit seine Masse werden, desto stärker macht sich diese bemerkbar. Der Tropfen wird in die Länge gezogen bis die Schwerkraft größer ist als die Adhäsionskraft mit der Pflanze. Der Tropfen fällt.
Soweit zur Vorgeschichte dieses Fotos. Denn hier hat sich ein sehr großer Tropfen zwischen den Früchten (?) einer Pflanze gebildet. Weil der Tropfen gleich von mehreren Seiten gehalten wird, nimmt er eine eindrucksvolle Größe an.
Das wiederum qualifiziert den Tropfen zu einer entsprechend großen Sammellinse, durch die die Umgebung verkleinert und kopfstehend abgebildet wird. Die Verkleinerung hat den Vorteil, dass wir durch die Wasserlinse blickend einen größeren Bereich der dahinter befindlichen Pflanzenteile überblicken können.
Soweit zur Physik. Aufgefallen ist mir dieses Detail allerdings aus anderen Gründen. Es sah einfach schön aus – das Zusammenspiel der filigranen verkleinerten Strukturen mit den Strukturen normaler Größe.

Vom Umfall zum Unfall

Hier wäre ein Fallschirm besser als ein um den Kopf gewickeltes Bettlaken

Als Kind hatte ich Schwierigkeit zur Kenntnis zu nehmen, dass „Unfall“ mit „n“ und nicht mit „m“ wie „Umfall“ geschrieben wird, denn das Wort hatte ich in einem ganz konkreten Fall kennengelernt. Als unser Nachbar nach dem wöchentlichen, weinseligen Kartenspiel wie gewohnt mit der Schwerkraft hadernd nach Hause torkelte. Sein verbundener Kopf, den er dann einige Tage mit sich herumtrug, wurde mir – die wahren Umstände verschweigend – als Folge eines Unfalls dargestellt, wobei ich dem konkreten Ereignis entsprechend Umfall verstand.

Weiterlesen

Weinender Wein

H. Joachim Schlichting. Spektrum der Wissenschaft 4 (2021), S. 68 – 69

Wie oft ein Glas Wein ein System erzeugt

Georg Christoph Lichtenberg (1742–1799)

Schwenkt man ein alkoholisches Getränk im Glas, rinnen an dessen Innenwand Tropfen herab. Sie entstehen, weil verdunstender Alkohol einen dünnen Film aus der Flüssigkeit in Form einer instabilen Stoßfront hochsaugt.

Weintrinker schwenken ihr Glas, um die Aromen besser zur Geltung zu bringen. Dabei bilden sich an der Innenseite Tropfen, die in das Getränk zurückfließen. Das Phänomen ist vielen Genießern vertraut und erlaubt gewisse Rückschlüsse auf die Konzentrationen der enthaltenen Stoffe – beispielsweise ist es besonders bei hochprozentigen Vertretern gut zu beobachten. Da die entstehenden Figuren ein wenig an Kirchenfenster erinnern, werden sie zuweilen auch so genannt.
Dass Wein auf diese Weise gewissermaßen Tränen vergießt, ist seit langem bekannt. Der englische Physiker Charles Vernon Boys (1855–1944) ging in seinem früher sehr populären Buch über Seifenblasen sogar davon aus, die Erscheinung würde bereits »in den Sprüchen Salomons Kapitel 23, Vers 31 erwähnt: Siehe den Wein nicht an, wenn er rot ist, wenn er seine Farbe dem Glase gibt, und wenn er von selbst aufwärts steigt.« (In der deutschen Bibelübersetzung Luthers lautet die Stelle etwas anders.)
Die erste physikalische Erklärung lieferte James Thomson (1822–1892) Mitte des 19. Jahrhunderts, doch die Details des Alltagsphänomens beschäftigen die Wissenschaft bis heute. Im März 2020 hat eine Forschergruppe um die Mathematikerin Andrea Bertozzi von der University of California in Los Angeles eine Arbeit dazu publiziert. Die Untersuchung bezieht die Geometrie des Glases ein und soll eine vollständige quantitative Beschreibung der Tränen liefern. Das Phänomen wirkt auf den ersten Blick einfacher, als es tatsächlich ist. Zum Verständnis ist es nötig, das Wechselspiel vielfältiger physikalische Aspekte zu entwirren.
Zunächst kommt die Tendenz gewisser Flüssigkeiten ins Spiel, Flächen zu benetzen. Schaut man sich ein Glas mit Wasser darin etwas genauer an, erkennt man, wie letzteres ein Stück weit an der Wand aufsteigt und einen typischen konkaven Meniskus hervorbringt. Das passiert, weil zur Ausbildung einer Grenzfläche zwischen zwei Substanzen Grenzflächenenergie nötig ist. Die Natur tendiert dazu, diese möglichst gering zu halten, und bei Wasser und Glas ist weniger Energie erforderlich als im Fall von Luft und Wasser.
Der Weg nach oben endet allerdings bald: Der Energiegewinn infolge des Anhaftens wird durch die potenzielle Energie, die das Medium nach unten zieht, mit zunehmender Höhe aufgewogen. Der Vorgang heißt auch Kapillareffekt. Wenn man nämlich das Glas auf ein Röhrchen mit winzigem Durchmesser verengt, reduziert das die anzuhebende Masse der Flüssigkeitssäule enorm, und das Wasser kann weiter steigen. In Bäumen spielt das eine wesentliche Rolle beim Transport von der Wurzel bis in die Blätter (siehe »Spektrum« Juli 2015, S. 50).
Wein und andere alkoholische Getränke bestehen vor allem aus Wasser und Alkohol sowie einigen für den Geschmack entscheidenden Stoffen. Beide Flüssigkeiten gehen zwar eine homogene Mischung ein, verhalten sich aber in physikalischer Hinsicht unterschiedlich. Alkohol verdunstet wesentlich bereitwilliger, hat also eher die Tendenz, in den gasförmigen Zustand überzugehen. Das ist unter anderem auf die größere Grenzflächenspannung des Wassers zurückzuführen, die der Verdunstung entgegenwirkt. Der Alkohol verfliegt daher früher – das wird bei der Destillation zum Abtrennen des »Weingeistes« ausgenutzt. Der Prozess läuft in der dünnen Schicht an der Glaswand besonders stürmisch ab. Dort ist die Grenzfläche zwischen Luft und Wein im Verhältnis zum Volumen sehr groß, und der Anteil des Wassers nimmt rasch zu. Dessen Anreicherung wiederum steigert die Grenzflächenspannung im Flüssigkeitsfilm.
Zur Verdunstung ist Energie nötig, die der Umgebung entzogen wird, also vor allem dem Wein selbst. Damit ist eine verhältnismäßig starke Abkühlung verbunden. Einen lebhaften Eindruck von der Verdunstungskälte kann man sich verschaffen, indem man einen Tropfen Alkohol auf dem Handrücken verteilt und die Hand schwenkt oder anbläst (siehe »Spektrum« Januar 2012, S. 52). Die Grenzflächenspannung nimmt mit sinkender Temperatur zu, was zusätzlich zum Spannungsunterschied zwischen dem dünnen Film und dem übrigen Wein beiträgt.
Das führt zu Ausgleichsströmungen: In dem Maß, in dem vor allem der Alkohol verdunstet, wird Wein aus dem Glas nachgezogen. Der Effekt ist nach dem italienischen Physiker Carlo Marangoni (1840–1925) benannt, der ihn schon im 19. Jahrhundert eingehend studiert hat. Jedoch war bislang noch nicht geklärt, wie der Prozess im Einzelnen abläuft. Denn stiege die Flüssigkeit in einem Film von einheitlicher Dicke auf, wäre nicht einzusehen, wieso sie nicht einfach ähnlich gleichmäßig wieder zurückfließen sollte – statt es in Form von Tränen zu tun.
Bertozzi und ihre Kollegen haben nun mit einem mathematischen Modell und Experimenten eine Lösung des Problems gefunden. Sie gehen unter anderem davon aus, dass die Grenzflächenspannung mit der Höhe des Films gleichmäßig zunimmt. Dann bewegt sich die Flüssigkeit in einer ringförmigen Welle nach oben. Dabei handelt es sich – in wissenschaftlicher Terminologie – um eine »umgekehrte unterkompressive Stoßwelle«. Trotz der äußeren Ähnlichkeit mit einer normalen Stoßwelle lässt hier das anhaltende Ziehen infolge der Marangoni-Strömung das Gebilde instabil werden.
Innerhalb der Schicht rücken einzelne Fronten nach, die von der Grenze zum Weinmeniskus ausgehen. Sie laufen gegen die bereits an der Glaswand befindliche, mit Wasser angereichte Flüssigkeit an. Dann lassen kleinste Inhomogenitäten entlang der Welle diese an solchen Stellen zerreißen. Um die Grenzflächenenergie zu minimieren, ziehen sich die Bruchstücke sofort zu separaten Tropfen zusammen, die wie Tränen am Rand herabfließen. Das Szenario wiederholt sich, solange ausreichend Alkohol im Wein ist. Angetrieben werden diese Vorgänge letztlich durch die Tendenz von Flüssigkeiten, sich durch Verdunstung gleichmäßig im zur Verfügung stehenden Raum zu verteilen. Sofern wir sie nicht daran hindern, indem wir sie vorher konsumieren.

Quelle

Dukler, Y. et al.: Theory for undercompressive shocks in tears of wine, Physical Review Fluids 5, 2020

Originalversion: Weinender Wein

Auf die Spitze getrieben…

Dieses unfassbare Wesen, der Augenblick,
liegt zwischen der Bewegung und der Ruhe
als in keiner Zeit seiend…
Platon, Parmenides 156 e

Die Fotografie liefert uns eine Möglichkeit, zumindest einen Aspekt des Faustischen Wunsches zu realisieren, zu einem Augenblick sagen zu können: „Verbleibe doch,du bist so schön!“ – eine Situation als Bild zu fixieren. Dies ist dann besonders eindrucksvoll, wenn ein Augenblick aus einem schnell ablaufenden Vorgang herausgeschnitten wird, der während der realen Beobachtung gar nicht die Zeit hat, ins wache Bewusstsein zu dringen. Wenn man an einer solchen Performance als Beobachter beteiligt ist, wird einem jedenfalls nicht die komisch wirkende äußerst kurzzeitige Situation auffallen, dass hier der Fahrradfahrer mit dem Vorderrad auf der davon völlig unbeeindruckten Spitze eines Baumes balanciert. Weiterlesen

Rätselfoto des Monats März 2021

Wie kommt es zu diesem Phänomen?

 

 

 

 

 

 

 

 

 


Erklärung des Rätselfotos des Monats Februar 2021

Frage: Wie kommt es zur Stabilität der Eisbrücken?
Oder: Warum bricht sich das Eismonster nicht den Hals?
Antwort: Schaut man sich den dünnen „Hals“ des gläsernen Monsters an, so staunt man vielleicht darüber, dass der vergleichsweise große „Kopf“ durch ihn getragen werden kann. Dieses Erstaunen resultiert aber hauptsächlich daraus, dass unsere Anschauung über die Tragfähigkeit von Strukturen in anderen Größenordnungen ausgebildet wird. Das hier zu sehende Gebilde ist aber nur etwa 10 cm lang und das ist entscheidend.
Dass der Unterschied in der Größenordnung eine wesentliche Rolle spielt, kann man sich folgendermaßen veranschaulichen: Die Tragfähigkeit des Halses (Biegekraft des Kopfes auf den Hals) ist proportional zur Querschnittsfläche des Halses. Sie variiert ungefähr mit dem Quadrat der Größe des Monsters. Das Volumen und damit die Masse des Kopfes variieren aber mit der Größe hoch drei. Wenn wir uns nun vorstellen, dass das Gebilde linear (unter Beibehaltung der Proportionen) um den Faktor 10 vergrößert wird und damit etwa im uns vertrauteren Meterbereich angesiedelt wäre, so nimmt die Querschnittsfläche des Halses um den Faktor 10 mal 10 = 100 zu. Das Volumen des Kopfes wächst aber mit dem Faktor 10 mal 10 mal 10 = 1000. Wenn man davon ausgeht, dass die Querschnittfläche gerade ausreichend war, den Kopf des Monsters zu tragen, wird bei einem 10 mal größeren Gebilde die Querschnittsfläche um den Faktor 10 zu klein sein, denn es muss ein 10 mal größeres Volumen tragen. Daher sind Hälse umso plumper/graziler, je größer/kleiner die Geschöpfe.

Auf der Spitze getrieben

Wenn man einen gespitzten Bleistift genau auf die Spitze stellen würde, dürfte er theoretisch nicht umfallen. In der Praxis fällt er aber und zwar ohne zu zögern. Erst wenn man ihn mit dem stumpfen Ende auf eine ebene Unterlage stellt, schafft man es vielleicht, dass er aufrecht stehen bleibt. Denn es kommt darauf an, den Schwerpunkt des Bleistifts, der etwa auf der halben Länge liegt, über der Unterstützungsfläche zu halten. Das setzt voraus, dass kleine Störungen diese Stabilität nicht zerstören.
Das Foto zeigt einen Ausschnitt aus der Skulptur Broken Obelisk von Barnett Newman (1905 – 1970), die vor der Neuen Nationalgalerie in Berlin steht. Bei der Konstruktion hat sich der Künstler genau mit diesem Gleichgewichtsproblem auseinander setzen müssen. Denn die Verbindung der beiden Stahlteile wird mit einer verhältnismäßig dünnen Verbindung realisiert. Allerdings ist die Verbindung fest und muss so stark sein, dass sich die Auslenkungen des oberen Teils infolge der Einwirkungen von Wind und Wetter in Grenzen halten. Diese Verbindung dünn und zugleich biegefest zu gestalten wird die „Kunst“ bei der Realisierung des Obelisks gewesen sein. Sie ist aber auch der in jeder Hinsicht zentrale Aspekt des Kunstwerks.
Dahinter steckt auch die alltägliche Einsicht, dass eine Sache auf die Spitze zu treiben, die Gefahr birgt, dass sie abbricht. Sie gilt nicht nur aus physikalischer Sicht.

Die Frage, wie groß eine Spitze  ist, hat zu der berühmten Frage geführt, wieviele Engel auf der Spitze einer Nadel Platz haben.

Gebogener und hängender Schnee

Da man den Schnee als eine Art Granulat kennt, das je nach Alter aus leichten Flocken bis hin zu kompakteren Kristallen besteht, traut man ihm ein Verhalten, wie in der nebenstehenden Abbildung zu sehen kaum zu. Hier haben sich auf den Ästen abgeladene Schneepakete der Schwerkraft ergeben und teilweise von der Unterlage gelöst, um wie schlaffe Textilien herabzuhängen. Hängender Schnee, wie geht das? Aus kaltem Schnee lässt sich kein Schneeball formen. Er rieselt wie Sand von der Hand. Älterer verharschter Schnee verhält sich demgegenüber wie ein fester Körper. Er fällt allenfalls als Ganzes aber er fällt nicht von selbst auseinander. Dass es zwischen diesen beiden Extremen Abstufungen gibt, derart dass eine Schneedecke gestreckt oder gebogen werden kann, kommt einem kaum in den Sinn. Und doch ist es so, wie man in den Fotos sieht. Weiterlesen

Gestylte Wimpern durch Mutter Natur

Man schaue sich die Wimpern dieses Kindes an. Sie scheinen sorgfältig gestylt, zu spitz auslaufenden Bündeln vereinigt. Dahinter steckt jedoch keine exaltierte Mutter, sondern letztlich Mutter Natur. Denn das Kind hat nur heftig im Wasser geplanscht. Alles andere geschah von selbst (Selbstorganisation). Wer mit dem Tuschpinsel vertraut ist, kennt das Phänomen in einem völlig anderen Kontext. Solange sich der Pinsel in Wasser befindet, bleiben seine Borsten in etwa so buschig wie außerhalb. Weiterlesen

Späte Prachtkerze im Tropfengewand

Diese Blüte einer Prachtkerze sieht zwar tropfenbehängt etwas traurig aus, obwohl sie bis jetzt keine Anstalten macht, das Blühen jahreszeitbedingt aufzugeben. Schaut man sich einige Wassertropfen etwas genauer an, so könnte man den Eindruck gewinnen, dass sich die Blüte mit auffallend vielen dieser Klunker behängt hat. Insbesondere der untere Tropfen erinnert an ein sorgfältig eingefasstes Schmuckstück – Bergkristall vielleicht.
Dass das Regenwasser nicht einfach an der Pflanze und ihren Blüten abperlt, hat vor allem zwei Ursachen. Zum einen nehmen Wasserportionen unter dem Einfluss ihrer Grenzflächenspannung mit der Luft die kleinstmögliche Oberfläche ein, um Energie zu sparen. Im Idealfall wäre das die Kugelgestalt. Doch die Erde (Schwerkraft) zerrt an den so entstandenen Tropfen und führt zu mehr oder weniger großen Abweichungen. Zum anderen sind die Pflanze und ihre Blüten wasserliebend. Das heißt, die gemeinsame Grenzfläche zwischen Pflanze und Wasser erfordert weniger Energie als die zwischen Wasser und Luft. Daher haften die Wassertropfen bis zu einer bestimmten Größe noch lange an der Pflanze und lassen sie je nach Stimmung schön und traurig oder schön und fröhlich erscheinen.

Sandrippel – Gestalt gewordene Antagonismen

Während die Sandkörner infolge der Erdanziehungskraft stoisch und unnachgiebig nach unten tendieren, werden sie vom Wind der Unberechenbarkeit des Wettergeschehens entsprechend immer wieder aufgescheucht, sodass ein bewegtes Wechselspiel der Kräfte zu jenen wunderschönen Rippelsystemenen führt, die man diesen regellos erscheinenden antagonistischen Wirkungen gar nicht zugetraut hätte. Die Choreografie der tanzenden Sandkörner steht nicht etwa in den Sternen, sondern wird von den Naturgesetzen im Zusammenspiel mit dem Zufall bestimmt. Die Rippel sind keine endgültigen Gestaltungen der Oberflächen der Dünen.Sie sind vielmehr in ständiger Bewegung, auch wenn sich zu Zeiten der Windstille Schüttwinkel einstellen, die in voller Übereinstimmung mit den charakteristischen Merkmalen der Sandkörner eine unerschütterliche Dauerhaftigkeit suggerieren. Zum Glück für den Anblick – bis sich der Wind erneut erhebt und abermals einen Streit mit der Wirkung der Schwerkraft vom Zaune bricht.
Besonders eindrucksvoll finde ich das im Foto abgebildete Rippelszenario, bei dem der obere Teil einiger Rippel wie von einer Walze plattgedrückt erscheint. Die granulare Beschaffenheit des Sandes steht in krassen Widerspruch zum Eindruck, dass es sich hier um eine plastische Masse handeln könnte. Ursache ist ein neu erfachter Wind aus einer anderen Richtung, der mit schmirgelnder Sandlast, die Spitzen der Rippel des Vortages abschleift.

Weiterlesen

Kleine Wassertropfen ganz groß

Wassertropfen umgeben uns allenthalben im Alltag. Auf dem Foto sieht man einige, an Spinnfäden hängende Tropfen im Vergleich zu einem etwa 2 Millimeter dicken Draht, der als Maßstab für die Einschätzung der Größe der anderen Tropfen dienen kann (zur Vergrößerung auf Bild klicken). Es zeigt sich, dass die Tropfen, die einen kleineren Durchmesser als der Draht haben, so gut wie kugelrund sind, wenn man einmal von kleinen Spitzen absieht, die durch teilweise unsichtbare Spinnfäden bedingt sind, an denen die Tropfen hängen. Weiterlesen

Alle wollen nach oben…

Die Ehrgeizigen setzen alles dran, die oberste Stufe der Karriereleiter zu erklimmen,

die Bergwanderer streben dem Gipfelkreuz zu,

die Vögel setzen sich meist auf die oberste Spitze, die in ihrem Territorium zu erreichen ist, bevor sie

in höchsten Tönen tirilieren,

die Inserenten wollen bei Google ganz oben stehen,

Richter Adam in Kleists Zerbrochenen Krug will unbedingt durch das obere Fenster ins Haus,

der Heliumballon steigt auf Nimmerwiedersehen hoch,

die Sektblasen beeilen sich die Oberfläche des Getränks zu erreichen,

und die Schnecken auf dem Foto, machen es nicht anders…

Ihr werdet weitere Beispiele kennen.

 

Und wozu das Ganze?

Letztlich holt die Schwerkraft alles auf die Erdoberfläche zurück. Dann kann man nur wünschen, dass es behutsam abgeht und der freie Fall vermieden wird.

Münzen – aus der Reihe tanzend

Geld übt von jeher einen großen Reiz auf die Menschen aus. Ihm werden oft magische Kräfte zugeschrieben. Wen wundert es da, dass die Münzen auf dem Foto der Schwerkraft trotzen und ihren eigenen Regeln folgen.
Alles begann damit, dass sie sich selbst versilberten.

 

Flachdacharchitektur – ein Kampf gegen die Schwerkraft

Die Idee des geneigten Daches ist von Anbeginn an in der Architektur präsent. Selbst die Schornsteine werden/wurden liebevoll mit Schindeln belegt und gepflegt. Man stelle sich nur vor, wie aufwändig es ist, eine defekte Schindel an einem hohen Schornstein zu ersetzen. Geneigte Dächer sind eine ebenso natürliche wie geniale Möglichkeit, Wasser zu kanalisieren. Nur viele Architekten des 20. Jahrhunderts und danach meinten eine bessere Idee zu haben, indem sie das ebene Flachdach einführten.
Nicht nur dass dadurch die Weiterlesen

Wie Tau Pflanzen tränkt

H. Joachim Schlichting. Spektrum der Wissenschaft 5 (2020), S. 60

Die Tropfen Tau schon rinnen,
Auf uns und über uns.
Achim von Arnim (1781 – 1831)

Einige Pflanzen schöpfen lebenswichtige Feuchtigkeit direkt aus der Luft, indem Wasserdampf an ihren spezialisierten Blättern kondensiert. Winzige Rillen auf deren Oberfläche lassen die wachsenden Wassertropfen verschmelzen und zu Boden fließen.

Bei einem Regenschauer suchen wir Schutz unter Bäumen, denn das Blätterdach hält den Boden trocken. Gelegentlich allerdings verhält es sich gerade umgekehrt, vor allem am Morgen – dann ist es nur rund um den Stamm nass. Dieses sonderbare Phänomen ist sogar von großer ökologischer Bedeutung. In niederschlagsarmen Gebieten der Erde trägt es maßgeblich zur Wasserversorgung mancher Pflanzen bei.
Bei Nebel kommt man den Ursachen schnell auf die Spur. Ein Teil der durchziehenden Schwaden bleibt an den Blättern der Bäume hängen. Die winzigen Tropfen vereinigen sich mit nachfolgenden und fallen schließlich auf Grund der eigenen Schwere ab.
Doch manchmal findet man frühmorgens selbst nach einer klaren Nacht ohne Anzeichen von Nebel trotzdem feuchte Stellen unter manchen Pflanzen. Dann verdankt sich die Wassergewinnung aus dem vermeintlichen Nichts einem anderen Effekt: Auf den Blättern der Bäume bildet sich Tau. Wenn es nachts kälter wird, nimmt die maximal mögliche Wasserdampfkonzentration ab. Sie sinkt dabei oft unter die tatsächlich vorhandene Feuchte – der so genannte Taupunkt wird unterschritten.
Die Blätter der Pflanzen kühlen sich schnell ab, denn sie sind von geringer Masse und haben daher eine geringe Wärmekapazität. Als Folge ihrer eigentlichen Funktion, tagsüber möglichst viel Sonnenlicht einzufangen, sind sie nachts ebenso optimal zum kalten Weltall ausgerichtet – und strahlen diesem Energie durch Wärme zu.
Damit sich Wasserdampf absetzen kann, sind zusätzlich zur Unterschreitung des Taupunkts Kondensationskeime nötig. Wegen winziger Oberflächenstrukturen und Verunreinigungen gibt es davon reichlich. Sobald an den Stellen Miniaturtröpfchen entstanden sind, wachsen diese zügig, denn sie sind ihrerseits ideale Orte für weitere Kondensation.
Schließlich neigen sich die Blätter. Meist sind sie ohnehin nicht waagerecht ausgerichtet, und selbst wenn, verbiegt sie die zunehmende Last. Die Schwerkraft lässt die Tropfen herabgleiten und zu Boden fallen. Das geschieht aber erst bei einer kritischen Größe.
Diese hängt einerseits von der Benetzbarkeit der Blätter ab, also der Adhäsionskraft, mit der Wasser daran haftet. Der Wert dafür lässt sich mit Hilfe des so genannten Kontaktwinkels bestimmen. Das ist die Neigung zwischen dem Rand der gekrümmten Oberseite eines Tropfens und der Blattoberfläche (siehe Illustration). Bei einem flachen Winkel von 0 bis 90 Grad ist der Untergrund hydrophil (wasserliebend), bei 90 bis 180 Grad ist er hydrophob (wasserabweisend). Im letzteren Fall können sich bereits relativ kleine Tropfen ablösen. Das ist der berühmte Lotoseffekt, der sich hier zu Lande beispielsweise auch bei Kapuzinerkresse oder bei Kohlrabi beobachten lässt (siehe Foto).
Andererseits ist die Voraussetzung für das Herunterfallen eine ausreichende Neigung der Blätter. Denn mit ihr wächst die Komponente der Schwerkraft, die für das Hinabkullern entscheidend ist. Da die Belastung durch das sich sammelnde Wasser das Blatt krümmt, kommt es zu einer Art Rückkopplung: Je mehr Tropfen entstehen und je größer sie werden, desto eher lösen sie sich ab.
Die Vorgänge kommen morgens zum Erliegen, wenn mit zunehmender Umgebungstemperatur die maximal mögliche Feuchte wieder zunimmt. Dann erhöht sich der Taupunkt, und die Neigung zur Kondensation nimmt ab. Schließlich überwiegt die Verdunstungsrate, so dass die letzten Wasserrückstände wieder verschwinden. Um bis dahin möglichst viel Feuchtigkeit zu den Wurzeln zu leiten, sollten die Tropfen rasch zu Boden gehen und Platz für neue machen. Falls die Pflanze auf diese Form der Versorgung angewiesen ist, sollten sie also möglichst schnell das kritische Volumen zum Abgleiten erreichen.
Zu Beginn wachsen einmal entstandene Tropfen jeder für sich. Zwei kleine verschmelzen erst dann zu einem großen, wenn sie sich zufällig berühren. Der Menge an herab rieselndem Wasser würde demnach zunehmen, wenn solche Vereinigungen öfter und zielgerichteter vorkämen. Die kanarische Kiefer etwa hat dafür besonders lange und schmale Nadeln entwickelt – eine fast eindimensionale Struktur. Die Tropfen kommen daher wesentlich rascher mit Nachbarn in Kontakt als bei einem ungerichteten Wachstum in der Fläche.
Auf den sehr biegsamen Nadeln geraten die Tropfen bald ins Gleiten und reißen auf dem Weg herab kleinere Exemplare mit. Und zwar nicht nur einige weitere, zufällig auf ihrer Bahn liegende, wie es auf einem flächenhaften Blatt der Fall wäre, sondern gleich alle, die sich unterhalb von ihnen befinden. Auch andere Pflanzen bieten eine solche anisotrope Topografie, etwa der Bambus. Dieser verfügt über in Längsrichtung geordnete Blattadern. Sie begünstigen schmale, elliptisch geformte Wassertröpfchen und führen sie gezielt hinab.
Die Idee, durch eine derartige Strukturierung Flüssigkeit effektiver aus Dampf zu produzieren, fasziniert Wissenschaftler schon länger. Sie wollen mit maßgeschneiderten Oberflächen unter anderem in Wüsten Trinkwasser gewinnen. 2019 hat eine französische Forschergruppe von einer Möglichkeit berichtet, auch kleinere Tropfen in Bewegung zu versetzen und ablaufen zu lassen, die normalerweise wieder verdunsten würden.
Das Team um Pierre-Brice Bintein von der Université Paris Diderot hat dazu mikroskopisch kleine Rillen auf Materialien aufgebracht. Daraufhin floss kondensiertes Wasser wesentlich schneller ab als auf glatten Flächen. Die kleineren Tropfen verschmelzen eher zu einer kritischen Größe, und auf dem Substrat verbleiben weniger Rückstände. Wenn es Ingenieuren gelingt, solche Strukturen großflächig und günstig herzustellen, ließe sich nicht nur mehr Nebel und Wasserdampr in Wüsten ernten, sondern außerdem die Entwässerung in anderen Systemen verbessern, bei denen die Schwerkraft eine Rolle spielt, von der Destillation bis zum Wäschetrockner.

Quelle
Bintein, P.-B. et al.: Grooves accellerate dew shedding. Physical Review Letters 122, 2019

PDF: Wie Tau Pflanzen tränkt

Eine kleine Physik rollender Tomaten

Wenn ich eine Tomate auf die flache Hand lege, rollt sie bereits bei einem sehr kleinen Neigungswinkel herunter – sofern sie nicht allzu stark von der Kugelform abweicht. Ein Quader von etwa derselben Größe würde erst bei einem sehr viel größeren Neigungswinkel hinunter gleiten, nämlich genau dann, wenn die mit der Neigung wachsende Komponente der senkrecht wirkenden Schwerkraft größer als die Reibungskraft zwischen Quader und Hand wird. Weiterlesen

El balanceo de las hojas al caer

H. Joachim Schlichting. Investigación y Ciencia Septiembre 2019  Curiosidades de la física

La manera en que fluye el aire alrededor de las hojas que caen de un árbol da lugar a varios patrones de movimiento recurrentes.

La elegancia que a menudo muestran las hojas cuando caen de un árbol no es casual. Dependiendo de las condiciones iniciales, su movimiento puede clasificarse en tres tipos básicos. [GETTY IMAGES/VIT-PLUS/ISTOCK]

A muchas personas les afecta emocionalmente la caída de las hojas en otoño, un espectáculo natural del que los poetas llevan hablando desde tiempos inmemoriales. Así, Edmond Rostand hizo que su Cyrano de Bergerac exclamara:
¡Qué bien caen! Cómo saben revestir de una belleza postrera ese trayecto tan corto de la rama a la tierra; y a pesar de su espanto por pudrirse en el suelo, ¡intentan que su caída tenga la gracia de un vuelo!
Este pasaje formula de manera poética la interesante observación —desde el punto de vista de la física— de que las hojas no solo se bambolean al azar mientras caen, sino que, a menudo, muestran movimientos regulares.
Si estudiamos el fenómeno con mayor detenimiento, podremos reconocer ciertas formas básicas que se distinguen especialmente bien cuando el viento está en calma. Aparte de la caída irregular y caótica, a menudo podemos encontrar tres patrones concretos.
El primero es la caída en posición horizontal, donde la hoja flota plana en el aire y solo se balancea ligeramente en torno a dicha posición. En segundo lugar tenemos la caída oscilante, en la que las hojas se mecen alternativamente a un lado y a otro de manera bastante regular. Y por último podremos observar la caída rotatoria, caracterizada por un movimiento en el que la hoja gira sobre sí misma y experimenta una notable desviación lateral (véase la figura 1).

Flujos de aire
Para esbozar una explicación, podemos simplificar e imaginarnos que la gravedad actúa sobre el centro de masas de la hoja. La velocidad de esta aumentaría de modo constante debido a la aceleración de la gravedad si no fuera por la fuerza de resistencia del aire, que aumenta con el cuadrado de la velocidad y es proporcional al área de la sección transversal expuesta al aire incidente…

PDF: El balanceo de las hojas al caer

 

Rosen im Winter

Auch im Winter können die Rosen etwas von sich hermachen. Die Hagebutten, die die Nüsschen der Rosen enthalten, strahlen in einem ebenso schönen Rot wie die Rose im Sommer. Besonders wirkungsvoll kommen sie hier zum Ausdruck, weil sie sich mit einem Schneehäubchen geschmückt und damit meine Aufmerksamkeit auf sich gezogen haben.

Die Natur ist Übermaß. Sie ist über dem Durchschnitt. Eine einzelne Hagebutte platzt in Lobeshymnen. Was tun mit Regen, mit Schnee, mit Graupel, mit Blättern, mit Kometen, mit Hagel, mit Blitz, mit Apfeln, Pfirsichen und Pflaumen, damit, daß die Natur ihren Überfluß von sich schüttelt, die schwerkraftsbegeisterten Objekte, die sich über meinem Kopf ergießen.

Jeannette Winterson (*1959). Kunst und Lügen

Der Schwerpunkt der Kerze

Diesmal wurden die Kerzenhalter nicht an den Zweigen festgeklemmt, sondern s-kurvenförmig darüber gehängt. Der Rest wird von der Schwerkraft besorgt. Die unten angebrachte massive Kugel sorgt dafür, dass der Schwerpunkt der Kerze samt Halter stets unterhalb des Unterstützungspunkts liegt. Die Kerze „hängt“ also stabil. Jede Auslenkung aus der Ruhelage führt in die stabile Lage zurück. Weiterlesen

Wenn Laub sich abwärts wiegt

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2018), S. 68 – 69


Die Luft umströmt fallende Blätter auf charakteristische Weise. Darum wiederholen sich auf dem Weg zum Boden oft einige typische Bewegungsfiguren.

 

Ein unabsehbar Blättermeer
entperlt dem Netz der Zweige

Christian Morgenstern (1871–1914) Weiterlesen

Rätselfoto des Monats November 2017

 

Warum läuft die Tinte nicht aus?


Erklärung zum Rätselfoto des Monats Oktober 2017
Frage:
Sonne oder Mond?

Antwort: Wenn man nicht auf den Kontext achtet, könnte es sowohl der Mond als auch die Sonne sein. Vom Mond sind die Strukturen nicht zu erkennen, und die Sonne ist bei diesigem Wetter oft so gedimmt, dass sie wie der Mond aussieht. Aber es gibt Hinweise auf die Antwort. Im Vordergrund erscheinen die Blätter eines Baumes in einem roten Licht. Insbesondere die Blätter, deren Seite so zum Betrachter/zur Kamera  hin gerichtet ist, dass Einfallswinkel des Sonnenlichts gleich Reflexionswinkel gilt, reflektieren spiegelnd rotes Sonnenlicht. Neben der spiegelnden Reflexion, die an der Oberflächenschicht der Blätter vieler Pflanzen auftritt, reflektieren alle Blätter das auftreffende Sonnenlicht diffus. Genauer: Sie absorbieren im blauen und hellroten Bereich und emittieren das komplementäre Grün. Da ihnen in der Abenddämmerung vorwiegend rot angeboten wird, können sie so gut wie kein Licht mehr aussenden und erscheinen schwarz. Wie man sieht.

Schlabbern mit Stil

SchlichSchlabbern mit Stilting, H. Joachim. In: Spektrum der Wissenschaft 44/10 (2013), S. 54 – 55

Ihre Anatomie hindert Katzen und Hunde daran, Flüssigkeiten einfach einzusaugen.
Den Durst können die Tiere nur dank einiger Tricks stillen.

Es muß in der Physik fast Alles
neu untersucht werden,
selbst die bekanntesten Dinge,
weil man gerade da am wenigsten
etwas Neues oder Unrichtiges vermuthet
Georg Christoph Lichtenberg (1742 – 1799)

PDF: Schlabbern mit Stil

Photoarchiv