//
Artikel Archiv

Schwingung

Diese Schlagwort ist 33 Beiträgen zugeordnet

Das singende Teesieb

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2021), S. 68 – 69

Daß vom reinlichen Metalle
Rein und voll die Stimme schalle

Friedrich Schiller (1759–1805)

Trifft ein Wasserstrahl auf die Lochstruktur eines Edelstahlsiebs, ist manchmal ein Pfeifton zu hören. Er entsteht, wenn Wasserwirbel periodisch auf das Blech zurückwirken und Resonanzschwingungen anregen.

Früher wurde die Teepause von einem Pfeifen eingeläutet, heute wird sie eher damit beendet. Jedenfalls hat der Kessel für die Herdplatte mit seinem schrillen Flöten inzwischen beinahe ausgedient, während Teesiebe aus Edelstahl immer größere Verbreitung finden. Sie sorgen für ein seltsames akustisches Phänomen: Zahlreiche Videos im Internet zeigen die Utensilien, wie sie beim Reinigen im Spülbecken Töne von sich geben.

Die Zufallsentdeckung ist nach kurzem Ausprobieren leicht reproduzierbar, und unter den passenden Umständen offenbaren verschiedene Fabrikate ihre Musikalität. Zum einen muss der Wasserstrahl das Metall mit einer gewissen Geschwindigkeit treffen. Diese nimmt mit der Fallhöhe zu. Bei manchen Sieben reicht der Abstand zwischen Wasserhahn und Spülbecken nicht aus, und das Kunststück gelingt nur im Badezimmer oder mit dem Gartenschlauch. Zum anderen tönt die gelochte Fläche nur dann, wenn sie unter einem bestimmten Winkel getroffen wird. Um den für das Pfeifen optimalen Bereich zu finden, empfiehlt es sich, das Sieb unter dem Wasserstrahl ein wenig zu heben und zu senken und dabei die Neigung zu variieren. Am besten funktioniert es, indem der Strahl den flachen Boden trifft (siehe »Reinigen unter Pfiffen«). Im Lauf einer Reihe von Experimenten konnten mein Kollege Wilfried Suhr und ich sogar ein Sieb an der Mantelseite zum Tönen bringen.

Lochblech aus der Nähe: Ein Wasserstrahl durchdringt das schräg gestellte Sieb teilweise und bildet auf der Rückseite einen Wasserwulst (Pfeil), in dem die Mechanismen zur Tonentstehung ablaufen.

Der relativ kräftige Ton lässt auf eine Schwingung schließen, zu der das auftreffende Wasser das Lochblech anregt. Berührt man das Metall in der Nähe des Strahls, dämpft das den Vorgang, und das Pfeifen verschwindet. An allen übrigen Stellen kann das Sieb hingegen angefasst werden, ohne damit den Ton zu beeinflussen.

Was dabei genau passiert, hat Wilfried Suhr in einer 2020 veröffentlichten Arbeit zusammengefasst. Der auf die Siebfläche prallende Strahl wirkt wie ein mechanischer Schwingungserreger, der zum Beispiel eine Lautsprechermembran vibrieren lässt. Doch das Wasser strömt gleichförmig aus dem Hahn. Woher kommt der Rhythmus, mit dem es das Blech auslenken und in Schwingung versetzen könnte? Es genügt dafür nicht, dass es mit einer ganz bestimmten Geschwindigkeit auf einen passenden Abschnitt des Lochblechs auftrifft. Darüber hinaus muss ihm durch eine geeignete Wechselwirkung eine Frequenz aufgeprägt werden.

Den Taktgeber entdeckt man bei einem genaueren Blick auf die Auftreffstelle. Längs des geneigten Blechs staut sich eine Strömung auf, die teilweise durch die Löcher hindurch auf die andere Seite gelangt (siehe »Lochblech aus der Nähe«). Wenn man die diversen Strömungsbereiche geschickt manipuliert und den Einfluss kleiner Störungen beobachtet, findet man heraus: Die Töne werden von einem länglichen Wasserwulst unterhalb des unmittelbaren Aufpralls hervorgebracht. Dort entsteht eine zeitlich periodische Wasserbewegung – für die wiederum die regelmäßige Lochstruktur notwendige Voraussetzung ist.

Synchronisation: Schematische Darstellung der Wirbelablösung an einer gelochten Wandung. Gekoppelte Wirbelpaare des gleichen Entstehungszyklus sind gleichfarbig markiert.

Die Blechstege zwischen den Löchern spalten nämlich den Wasserstrom auf und erfüllen dabei eine ähnliche Funktion wie gespannte Saiten in einem Luftstrom. Diese lösen jeweils eine Folge paarweise entgegengesetzter Wirbel aus, eine so genannte kármánsche Wirbelstraße. Sie stoßen sich gewissermaßen vom Draht ab, woraufhin er schwingt. Wenn dabei eine seiner Eigenfrequenzen angeregt wird, gerät er in Resonanz und ruft in der umgebenden Luft periodische Verdichtungen und Verdünnungen hervor. Sie werden als Ton wahrnehmbar. So entstehen beispielsweise die Klänge einer Äolsharfe (siehe »Spektrum« November 2020, S. 52).

Ein vergleichbares, nur wesentlich komplexeres Geschehen spielt sich beim Teesieb ab. Im Bereich des Wasserwulstes entstehen hinter den regelmäßigen metallischen Stegen gleich mehrere solcher Wirbelstraßen, die hier aus Wasserwirbeln bestehen. Sie üben in ähnlicher Weise Kräfte auf die angeströmte Fläche des Siebs aus und bringen dessen Eigenschwingungen zur Resonanz. Jedes der vielen benachbarten Wirbelpaare wirkt auf dieselbe Region des Blechs zurück. Zu einer einheitlichen kollektiven Schwingung des ganzen Siebbereichs kommt es nur, wenn die Wirbel sich synchron ablösen und ihre Einzelkräfte gegenseitig verstärken (siehe »Synchronisation«). Passiert das wirklich? Fotografische Untersuchungen des Strömungsfelds an einem vergrößerten und vereinfachten Modell legen nahe, dass die Wirbel angrenzender Löcher tatsächlich aneinander koppeln, während sie sich vom Blech entfernen.

Das Phänomen ist relativ robust gegenüber Störungen. Schwingt das durchströmte Element des Siebs in Resonanz mit der Anregungsfrequenz der Wirbel, so ändert sich daran auch dann nichts, wenn die Auftreffgeschwindigkeit des Wassers in gewissen Grenzen variiert. Das schwingende Blech rastet auf die Eigenschwingung ein. Infolge dieses »Lock-in«-Verhaltens bleibt die Tonhöhe erhalten. Abweichungen zwischen Anregungs- und Resonanzfrequenz senken allerdings die Amplitude. Die verringerte Auslenkung macht sich dann in einer entsprechend abnehmenden Lautstärke bemerkbar.

Bei einem Exemplar eines Teesiebs ist es uns durch Variation der Falldistanz des Wassers sogar gelungen, unterschiedliche Eigenschwingungen des Lochblechs in Resonanz zu versetzen und damit Pfeifgeräusche verschiedener diskreter Frequenzen anzuregen. Mit der Länge des Strahls wuchs auch die jeweilige Tonhöhe. Bei Fallhöhen zwischen zwei Tonstufen und außerhalb des Lock-in-Bereichs verstummte das Teesieb jedoch.

Quelle

Suhr, W.: Pfeiftöne vom Teefilter. Physik und Didaktik in Schule und Hochschule, 2020

Originalpublikation

Das Valett-Federpendel – Ein Künstler mit Physik

Christian Ucke, H. Joachim Schlichting. Physik in unerer Zeit 52/4 (2021), S. 197 – 199

Die Schwingung wechselt selbsttätig zwischen auf und ab und hin und her

Die Verbindung von physikalisch-mathematischen Experimenten mit künstlerisch-handwerklicher Inspiration bringt überraschende Kreationen hervor. Jochen Valett hat ein besonderes Federpendel geschaffen.

Eine mit einem passenden Körper belastete vertikal ausgelenkte Schraubenfeder führt eine harmonische Schwingung aus. Dabei verkürzt und verlängert sich die Länge der Feder periodisch. Durch nicht zu vermeidende winzige seitliche Auslenkungen des Schwingers entsteht zusätzlich eine Art Fadenpendel, das mit dem Federpendel gekoppelt ist. Wenn beide Schwingungsarten in der Weise aufeinander abgestimmt sind, dass die Periode der vertikalen Auf- und Abbewegung gerade die Hälfte der Periode der seitlichen Hin- und Herbewegung entspricht, so treiben sich die beiden Schwingungen wechselseitig an – es kommt zur Resonanz. Sie besteht darin, dass die vertikale Schwingung die seitliche Pendelschwingung aufschaukelt bis sie selbst zur Ruhe gekommen ist und dann umgekehrt die Pendelschwingung die vertikale Schwingung antreibt usw. Auf diese Weise kommt es zu einem periodischen Wechsel zwischen reiner Auf- und Abbewegung und reiner Hin- und Herbewegung (siehe: Metapendel).

Schaut man sich das Federpendel bei der Auf- und Abbewegung genauer an, so entdeckt man, dass sich die Feder bei jeder Abwärtsbewegung zwangsläufig ein wenig abwickelt, weil durch die Verlängerung der Pendellänge die Drahtlänge pro Windung größer wird. Bei der Aufwärtsbewegung ist es dann genau umgekehrt und die Feder wickelt sich ein wenig auf. Durch die damit verbundene, an den Enden der Feder gut zu beobachtende leichte Drehung um eine gedachte senkrechte Achse wird auf den Körper ein Drehmoment jeweils in der einen oder anderen Richtung ausgeübt. Dabei wird Translationsenergie in Rotationsenergie verwandelt.

Umgekehrt führt die Drehung des Körpers dazu, dass die Feder ein wenig auf- oder abgewickelt wird, wodurch die Zugkraft der Feder entsprechend variiert wird. Bei einer Abwicklung wird die Zugkraft der Feder kleiner und der Körper sinkt weiter herab, während bei einer Aufwicklung die Zugkraft zunimmt und der Körper infolgedessen höher aufsteigt.

Stimmt man nun ähnlich wie bei der Kopplung zwischen Feder- und Fadenpendel durch geeignete Maßnahmen die Perioden zwischen Feder- und Torsionspendel aufeinander ab, so erreicht man ähnlich wie bei der Kopplung zwischen vertikaler und seitlicher Schwingung, dass ein permanenter Wechsel zwischen Rotation- und Translationsschwingung bewirkt wird. Um das zu bewerkstelligen, bleibt einem nichts anderes übrig, als das Trägheitsmoment des Pendelkörpers an die Gegebenheiten anzupassen, denn an den Eigenschaften der Feder lässt sich kaum etwas verändern.

Ein solches in regelmäßiger Weise zwischen Translation und Rotation wechselndes Pendel wurde 1894 von dem Engländer Lionel Robert Wilberforce konstruiert. Es ist auch heute noch ein verbreitetes Demonstrationsgerät in physikalischen Praktika und zeigt sehr anschaulich das Phänomen gekoppelter Schwingungen. Als Pendelkörper dient meist ein Metallzylinder, an dem senkrecht zur Achse Gewindestangen mit drehbaren Muttern fixiert sind (Abb. 1). Indem man die Muttern zum Zylinder hin oder von ihm weg dreht, kann das Trägheitsmoment sehr fein variiert und die Resonanzsituation genau einjustiert werden. Weiterlesen im PDF-File

Die Einreichversion dieses Aufsatzes kann als PDF-file heruntergeladen werden.

Das Schwanken zwischen zwei Polen

Ich möchte einen Ausdruck finden für die Zweiheit, ich möchte Kapitel und Sätze schreiben, wo beständig Melodie und Gegenmelodie gleichzeitig sichtbar wären, wo jeder Buntheit die Einheit, jedem Scherz der Ernst beständig zur Seite steht. Denn einzig darin besteht für mich das Leben, im Fluktuieren zwischen zwei Polen, im Hin und Her zwischen den beiden Grundpfeilern der Welt. Beständig möchte ich mit Entzücken auf die selige Buntheit der Welt hinweisen und ebenso beständig daran erinnern, daß dieser Buntheit eine Einheit zugrunde liegt*.


Hermann Hesse. Kurgast. Aufzeichnungen von einer Badener Kur. 1977; S. 107

Wenn der Wind die Harfe spielt

H. Joachim Schlichting Spektrum der Wissenschaft 11 (2020), S. 52 – 53

Du, einer luftgebornen Muse
Geheimnisvolles Saitenspiel

Eduard Mörike (1804–1875)

Von Luft umströmte Drähte erzeugen Wirbel, die sich hinter ihnen abwechselnd nach oben und unten hin ablösen. Aus dieser Schwingung werden unter den richtigen Umständen weithin hörbare Töne.

Noch vor wenigen Jahrzehnten wurden viele Haushalte vorwiegend durch oberirdische Telegrafen – und Stromleitungen mit ihren typischen hölzernen Masten mit Nachrichten und elektrischer Energie versorgt. Mit ihnen ist auch ein eindrucksvolles akustisches Phänomen fast ganz verschwunden. Bei stärkerem Wind oder wenn man sein Ohr an einen der Masten hielt, waren heulende, je nach der Stärke des Windes geisterhaft klingende auf- und abschwellende, langgezogene Töne zu hören, wie man sie sonst nicht kennt. Sie werden von den Drähten hervorgerufen, die den Wind in hörbare Schwingung versetzen. Die Masten fungierten als Resonanzkörper und ermöglichten, dass die Töne auch bei mäßigem Wind gehört werden können. Selbst wenn heute manchmal noch in ländlichen Gegenden solche Stromleitungen zu den Häusern führen, funktionieren sie meist nicht. Denn inzwischen werden statt der relativ dünnen Drähte dicke isolierte Leitungen benutzt, die dafür weniger geeignet sind. Bei stärkerem Wind kann man ähnliche Töne allenfalls an Weidenzäunen wahrnehmen, die aus einzelnen gespannten zylindrischen Drähten bestehen.
Schon lange vor der Elektrifizierung haben die Menschen winderzeugte Klänge in der Natur wahrgenommen und mit Hilfe besonderer Musikinstrumente „einzufangen“ versucht. Diese sogenannten Windharfen oder auch Äolsharfen (nach dem Windgott Aeolos benannt) waren bereits im Altertum bekannt. In der Neuzeit wurde die erste Äolsharfe von Athanasius Kircher (1602 – 1680) gebaut; aber erst viel später zur Zeit der Romantik im 19. Jahrhundert erlebte dieses Musikinstrument der Natur eine wahre Blütezeit. Auch heute noch kann man Äolsharfen als Kunstwerke im öffentlichen Raum vorfinden (Beispiele) und sie sind sogar für den eigenen Garten käuflich zu erwerben.
Das physikalische Prinzip der Windharfe ist lange Zeit nicht erkannt worden, obwohl man den Wind ursächlich mit dem Klang in Verbindung brachte. Erst Arbeiten von Vincent Strouhal (1850 – 1922) führten zu einer weitgehend korrekten physikalischen Erklärung. Er stellte fest, dass ein luftumströmter zylindrischer Draht selbst dann Töne erzeugt, wenn er an der Schwingung gar nicht teilnimmt. Die jeweilige Tonhöhe bzw. Frequenz erweist sich als unabhängig von Material, Länge und Spannung des Drahts. Sie ist lediglich proportional zur Windgeschwindigkeit und umgekehrt proportional zum Drahtdurchmesser, wobei die dimensionslose Proportionalitätskonstante für viele zylindrische Objekte einen Wert von ungefähr 0,2 besitzt.
Beispiel: Bei einer mäßigen Brise mit einer Windgeschwindigkeit von 10 m/s würde ein Draht von 5 mm Durchmesser einen Ton mit einer Frequenz  abgeben.
Die Tonentstehung ist darauf zurückzuführen, dass die Luft vor dem im Luftstrom stehenden zylindrischen Draht verdichtet wird und infolge die Reibung der Luft mit den Drahträndern der Druckausgleich mit der verdünnten Luft hinter dem Draht nicht kontinuierlich, sondern ruckweise periodisch erfolgt. Dabei lösen sich abwechselnd an der einen und anderen Seite des Zylindermantels entgegengesetzt rotierende Wirbel, die zu einer sogenannten Kármánschen Wirbelstraße führen (Abbildung). Weil sich die Wirbel anschaulich gesprochen vom Draht abstoßen, üben sie auf diesen eine Reaktionskraft aus, mit einer zur Richtung des Drahts senkrechten Komponente. Diese Kräfte sind zwar im Allgemeinen sehr klein und bringen den Draht kaum in Bewegung. Nähert sich die Frequenz der Wirbelablösung jedoch einer der Eigenfrequenzen des Drahts, so wird dieser zum Mitschwingen angeregt, was als Ton hörbar werden kann.
Als Eigenfrequenz eines eingespannten Drahts bezeichnet man die durch die Masse, die Spannung und die Länge des Drahts festgelegte Frequenz, mit der der Draht schwingt, wenn er zum Beispiel durch Zupfen ausgelenkt wird. Neben der Grundfrequenz, in der sich der Draht als Ganzes zwischen den beiden festen Enden periodisch hin und her bewegt treten im Allgemeinen zusätzlich Oberschwingungen auf, wobei der Draht auch noch in sich schwingt. Die Frequenzen dieser Oberschwingungen sind ganzzahlige Vielfache der Grundschwingung.
Stimmt nun eine der Eigenfrequenzen des schwingenden Drahtes ungefähr mit der Frequenz der Wirbelablösung überein, so gerät er in eine Resonanzschwingung. Dabei schaukelt er sich zu einer so großen Auslenkung auf, dass der durch die Wirbel hervorgerufene leise Ton kräftig verstärkt und gegebenenfalls weithin hörbar wird.
Bemerkenswert ist, dass die Anregungsfrequenz nur in der Nähe der Eigenfrequenz liegen muss um den Draht in Resonanz zu bringen. Denn normalerweise schwingt ein System genau mit der Frequenz, in der es angeregt wird. Im vorliegenden Fall rastet der schwingende Draht gewissermaßen in die Eigenfrequenz ein. In der Fachwissenschaft ist dieses Verhalten als Lock-in-Effekt bekannt, der bei zahlreichen (nicht nur mechanischen) Schwingungssystemen auftritt.
Ohne Lock-in wäre eine Äolsharfe und andere tönende Drähte in der bekannten Form nicht möglich. Da nämlich die Windgeschwindigkeit nie völlig konstant ist und zumindest ein wenig schwankt, würde ansonsten die Frequenz der Wirbelablösung immer wieder von der Eigenfrequenz des Drahtes abweichen. Der tönende Draht bzw. die Äolsharfe wären also die meiste Zeit stumm, was aber bekanntlich nicht der Fall ist. Die Auslenkung des schwingenden Drahts ist innerhalb des Lock-in-Bereichs ist allerdings am größten, wenn der Draht genau mit der Wirbelablösungsfrequenz schwingt und nimmt der Abweichung entsprechend ab. Das ist der Grund für die Schwankungen der Lautstärke der jeweiligen äolischen Töne mit der Windgeschwindigkeit, die der Äolsharfe den typischen anschwellenden und wieder verhallenden Klang verleihen. Bei größeren Variationen der Windgeschwindigkeit werden gegebenenfalls andere Saiten der Äolsharfe zum Klingen gebracht.
Die Äolsharfe ist wie Klavier, Geige und die Harfe ein Saiteninstrument. Während letztere durch planvolles Anschlagen, Streichen und Zupfen zu vorher komponierten Klangfolgen veranlasst werden, überlässt man das Klingen der Äolsharfe weitgehend den unberechenbaren Strömungen des Windes, der mit Hilfe von Luftwirbeln das Schwingungsverhalten der Saiten bestimmt.
Der Anregungsmechanismus der Äolsharfe kann ganz allgemein bei von Luft umströmten Zylindern beobachtet werden kann, lässt sich übrigens mit einem einfachen Experiment demonstrieren. Dazu benötigt man nur einen längeren, schlauchartigen Luftballon (z.B. Länge 1,50 m und Durchmesser 5 cm), den man an einem Ende erfasst und schnell mit dem Arm hin und her oder auf und ab bewegt. Der Ballon gerät dadurch deutlich fühlbar und sichtbar in eine Schwingung senkrecht zur Bewegungsrichtung.
Die brummenden Töne, die zuweilen unter Hochspannungsleitungen zu hören sind, haben einen ganz anderen physikalischen Ursprung. Sie rühren zwar auch von schwingenden Drähten her, werden aber nicht mechanisch durch strömende Luft, sondern durch elektrodynamische Vorgänge in Schwingung versetzt: Jeder stromdurchflossene Leiter ist von einem Magnetfeld umgeben. Die Magnetfelder der bei Hochspannungsleitungen parallel verlaufenden Leiterseile wirken so aufeinander, dass sich gleichartige Felder abstoßen und unterschiedliche Felder anziehen. Dadurch geraten die Seile in einem 50-Hertz-Takt in Schwingung, die auf die Luft übertragen wird und auf diese Weise als typischer Brummton an unser Ohr gelangt –  und sind auch in dieser Hinsicht nicht mit den wohlklingenden Äolharfen zu vergleichen.

Publizierte Version: Wenn der Wind die Harfe spielt.

Cappuccino mit Dämpfer

H. Joachim Schlichting. Spektrum der Wissenschaft 9 (2020), S. 66 – 67

das schäumte hoch;
dick & gelbbraun

Arno Schmidt (1914–1979)

Schaum hat einige typische Eigenschaften eines Festkör-pers. Darum wirkt er auf der Oberfläche einer Flüssigkeit fast wie ein Deckel – und kann bei starken Bewegungen sogar ihr Überschwappen verhindern. Weiterlesen

Zwitschern auf dünnem Eis

H. Joachim Schlichting. Spektrum der Wissenschaft 12 (2019) S. 72 – 73

Das Eis, es muß doch tragen.
Wer weiß!
Friedrich Wilhelm Güll (1812 – 1879)

Wer auf einer zugefrorenen Eisfläche Schlittschuh läuft oder Steine hüpfen lässt, erzeugt manchmal hohe, langgezogene Töne, die nicht von dieser Welt zu stammen scheinen. Weiterlesen

Der pulsierende Flüssigkeitsstrahl

H. Joachim Schlichting. Physik in  unserer Zeit 50/5 (2019), S. 251

Beim Bestreben eines horizontal aus einer Öffnung austretenden flachen Flüssigkeitsstrahls Zylinderform anzunehmen, schießt er aus Trägheit über das Ziel hinaus.

Weiterlesen

El balanceo de las hojas al caer

H. Joachim Schlichting. Investigación y Ciencia Septiembre 2019  Curiosidades de la física

La manera en que fluye el aire alrededor de las hojas que caen de un árbol da lugar a varios patrones de movimiento recurrentes.

La elegancia que a menudo muestran las hojas cuando caen de un árbol no es casual. Dependiendo de las condiciones iniciales, su movimiento puede clasificarse en tres tipos básicos. [GETTY IMAGES/VIT-PLUS/ISTOCK]

A muchas personas les afecta emocionalmente la caída de las hojas en otoño, un espectáculo natural del que los poetas llevan hablando desde tiempos inmemoriales. Así, Edmond Rostand hizo que su Cyrano de Bergerac exclamara:
¡Qué bien caen! Cómo saben revestir de una belleza postrera ese trayecto tan corto de la rama a la tierra; y a pesar de su espanto por pudrirse en el suelo, ¡intentan que su caída tenga la gracia de un vuelo!
Este pasaje formula de manera poética la interesante observación —desde el punto de vista de la física— de que las hojas no solo se bambolean al azar mientras caen, sino que, a menudo, muestran movimientos regulares.
Si estudiamos el fenómeno con mayor detenimiento, podremos reconocer ciertas formas básicas que se distinguen especialmente bien cuando el viento está en calma. Aparte de la caída irregular y caótica, a menudo podemos encontrar tres patrones concretos.
El primero es la caída en posición horizontal, donde la hoja flota plana en el aire y solo se balancea ligeramente en torno a dicha posición. En segundo lugar tenemos la caída oscilante, en la que las hojas se mecen alternativamente a un lado y a otro de manera bastante regular. Y por último podremos observar la caída rotatoria, caracterizada por un movimiento en el que la hoja gira sobre sí misma y experimenta una notable desviación lateral (véase la figura 1).

Flujos de aire
Para esbozar una explicación, podemos simplificar e imaginarnos que la gravedad actúa sobre el centro de masas de la hoja. La velocidad de esta aumentaría de modo constante debido a la aceleración de la gravedad si no fuera por la fuerza de resistencia del aire, que aumenta con el cuadrado de la velocidad y es proporcional al área de la sección transversal expuesta al aire incidente…

PDF: El balanceo de las hojas al caer

 

Dunas musicales

H. Joachim Schlichting. Investigación y Ciencia 3 (2019) Curiosidades de la física

Cuando las capas de arena de una duna se deslizan, los granos pueden oscilar de forma colectiva y producir sonidos sorprendentes. La causa última del fenómeno sigue intrigando a los físicos.

La primera vez que visité una extensa playa que hay cerca de Burdeos, me sorprendió notar que, al caminar hacia la orilla, cada uno de mis pasos se veía acompañado de un chirrido relativamente agudo. No sabía que la arena seca pudiera producir sonido por el mero hecho de pisarla. Al fin y al cabo, parece difícil concebir un medio más simple que el que forman los granos de arena. Sin embargo, esos chirridos no son más que una pequeña muestra de un inmenso repertorio de sonidos posibles.
Desde tiempos inmemoriales los cronistas han relatado cómo, en muchos desiertos de arena y paisajes de dunas, los movimientos de la superficie, como los que tienen lugar en un alud, van acompañados de curiosos sonidos. En algunos casos, estos pueden ser ensordecedores y llegar a prolongarse durante varios minutos. Dependiendo de su frecuencia y volumen, quienes los han oído han hablado de cantos, silbidos, zumbidos, bramidos, gruñidos, aullidos o rugidos, y los han comparado, entre otras cosas, con el estrépito de un trueno o, en clave más moderna, con el ruido de un avión rasante.
Hoy tales afirmaciones pueden precisarse en términos de decibelios y de hercios: en la superficie de las dunas se miden intensidades acústicas de hasta 110 decibelios, mientras que las frecuencias varían entre 50 y casi 800 hercios. Ello hace que, en ocasiones, el sonido pueda escucharse a diez kilómetros de distancia.
Resulta comprensible que tales señales acústicas, aparentemente caídas del cielo del desierto, aterrorizasen en su día a los viajeros y suscitaran fantasiosas especulaciones sobre su origen. Ya en el siglo XIII, Marco Polo hablaba de los espíritus malignos del desierto del Gobi, que llenaban el aire «con sonidos de instrumentos musicales de todo tipo y, a veces, también con el ruido de tambores y armas». Más tarde, otros visitantes del desierto volverían a describir el fenómeno, como hiciera Charles Darwin en su Viaje del Beagle, de 1839.
Aunque pronto se comprendió que el mecanismo de acción fundamental eran los aludes, se ignoraban las condiciones concretas bajo las cuales llegaba a producirse el estruendo. De hecho, los físicos no comenzaron a estudiar el fenómeno con detalle hasta hace algunas décadas y, hoy por hoy, siguen persistiendo algunas incógnitas…

PDF: Dunas musicales

Der Klang des tropfenden Wassers

Schlichting, H. Joachim. Spektrum der Wissenschaft 2 (2019), S. 60 – 61

Das typische Pling entsteht nicht direkt beim Aufprall
auf die Wasseroberfläche, sondern erst darunter – wenn
mitgerissene Luft ins Schwingen gerät.

Und müssen Tropfen fallen,
Wenn wir entzückt werden sollen?
Johann Wolfgang von Goethe (1749–1832) Weiterlesen

Wenn Laub sich abwärts wiegt

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2018), S. 68 – 69


Die Luft umströmt fallende Blätter auf charakteristische Weise. Darum wiederholen sich auf dem Weg zum Boden oft einige typische Bewegungsfiguren.

 

Ein unabsehbar Blättermeer
entperlt dem Netz der Zweige

Christian Morgenstern (1871–1914) Weiterlesen

Die Zeit der heiteren Stunden

Weiterlesen

Fracturas en cascada

H. Joachim Schlichting.  Investigación y Ciencia Febrero 2018 Curiosidades de la física

Si uno comba un objeto alargado más allá de su límite de ruptura, casi siempre se partirá en más de dos trozos. ¿A qué se debe?

Un gran fresno que hay en mi vecindario me proporciona con regularidad ramas muertas que resultan ideales para encender la chimenea. Son lo suficientemente gruesas, están secas y se quiebran con facilidad. Esto último, en particular, lleva asociado un curioso fenómeno: si agarramos uno de esos palos por ambos extremos y lo doblamos hasta alcanzar el punto de fractura, rara vez se romperá en solo dos trozos, sino que lo hará casi siempre en tres. Este fenómeno, poco comprendido hasta hace poco, no solo ocurre con las ramas de fresno secas, sino con cualquier palo o barra sometido a una deformación intensa.
Una situación cotidiana en la que podemos observar dicho comportamiento es cuando, para cocer pasta, nos disponemos a partir un puñado de espaguetis para ajustarlos al diámetro de la olla. Este ejemplo ha alcanzado cierta notoriedad debido a que el célebre Richard Feynman llevó a cabo el experimento, pero no fue capaz de averiguar por qué, además de espaguetis partidos más o menos por la mitad, aparecían tantos trozos de poco tamaño. Aquel episodio revalorizó este mundano incidente culinario y el fenómeno se convirtió en objeto de investigaciones serias. La solución no llegaría hasta muchos años más tarde, con ayuda de simulaciones y fotografías de alta velocidad.

Fractura y rebote

Si observamos de cerca el modo en que se astillan los espaguetis, nos percataremos de que, por lo general, no se quiebran exactamente por su punto medio —donde están más curvados y experimentan la mayor tensión—, sino un poco más allá. Esto puede verificarse a posteriori, poniendo los pedazos uno al lado de otro. La causa de esta asimetría estriba en que los espaguetis no tienen una forma perfectamente cilíndrica ni están hechos de una masa cien por cien homogénea. Por tanto, ceden antes allí donde presentan «defectos de fabricación», donde el efecto conjunto de la tensión aplicada y la fragilidad del material es máximo. Así pues, hasta esta primera ruptura, la explicación resulta intuitiva….

PDF: Fracturas en cascada

Musikalischer Sand

Schlichting, H. Joachim. Spektrum der Wissenschaft 11 (2017) S. 56 -57.

Wenn sich Sandschichten am Abhang einer Düne gegeneinander verschieben, kann das die Körner zu kollektiven Schwingungen anregen. Das Ergebnis: überraschend laute Töne.

Manche, unerbittlich nachgiebig, geben
beim Abgleiten an der Böschung
eigentümliche Töne von sich,
schrill oder tief: »klingende Sande«

Hans Magnus Enzensberger (*1928) Weiterlesen

Aeolus-Orgel – das Raunen des Windes

Aeolsflöte-1Wenn ich diese Brücke überquere höre ich häufig, einen feinen auf- und abschwellenden tiefen Ton wie auf einem Alphorn geblasen. Er ist so rein, dass er aus dem Einerlei des akustischen Hintergrunds deutlich hervorsticht. Lange war mir der Ton ein Rätsel. Mir ging dabei allerlei dummes Zeug durch den Kopf. Als ich schließlich feststellte, dass der Ton vom Wind abhängig war, fand ich die Ursache in Form eines beschädigten Rohrpfosten im Brückengeländer. Wie man an dem vergrößerten Ausschnitt (Abbildung unten) gut erkennen kann, enthält dieser einen deutlich erkennbaren Riss. Er ist für den Wind so etwas wie das Mundstück, das Rohr eine Flöte. Indem der Wind das Rohr tangential umspielt, wird wie beim Blasen auf einem Schlüssel eine Schwingung der Luftsäule im Rohr angeregt. Weiterlesen

Auf Biegen und Brechen

Auf_Biegen_und_Brechen-(2)

Schlichting, H. Joachim. Spektrum der Wissenschaft 7 (2016), S. 42 – 43

Krümmt man einen Stab über seine Belastungsgrenze hinaus, zersplittert er meist in mehr als zwei Teile. Warum?

Nicht auf das Biegen,
auf das Brechen kommt es an
Martin Heidegger (1889 – 1976)

PDF: Auf Biegen und Brechen.

 

 

Die Welt? Eine ewige Schaukel!

JanrvDie Welt ist nichts als eine ewige Schaukel. Alle Dinge in ihr schaukeln ohne Unterlaß. Ich beschreibe nicht das Sein, ich beschreibe den Übergang. Es ist ein Protokoll von verschiedenen und veränderlichen Zufällen, von unbestimmten und, wie es sich trifft, wohl gar von widersprechenden Vorstellungen. Nicht bloß der Wind der Zufälle bewegt mich nach seiner Richtung; sondern ich bewege mich noch obendrein, ich wechsle die Richtung. Und wer nur genau auf den Ausgangspunkt achtet, der wird sich schwerlich zweimal in  völlig derselben Lage wiederfinden (Michel de Montaigne (1533 – 1592). Weiterlesen

Rätselfoto des Monats Juli

114_Drehender-Wasserstrahl

Hat der Wasserstrahl einen Drehwurm? Wenn ja, warum?

Erklärung des Rätselfotos vom Vormonat: Blauer Sternenhimmel

La catástrofe del café para llevar

Coffee-to-go-1H. Joachim Schlichting. Investigación y Ciencia Enero (2015) – Nº 460

¡Cuidado con las resonancias! Al caminar con un vaso en la mano, tendemos instintivamente a hacer justo lo contrario de lo que deberíamos para que el líquido no se derrame.

En nuestra época resulta impensable vivir sin café para llevar. Es común ver a gente transportar la bebida en un vaso de papel o plástico en estaciones de tren, zonas peatonales, pasillos de oficina o salas de reuniones. Sin embargo, evitar los accidentes requiere ciertas destrezas motoras y, a menudo, nos obliga a adoptar una postura nada natural. Aunque los fabricantes han reaccionado a tales contratiempos proveyéndonos de recipientes con tapa, el líquido del interior sigue obedeciendo las leyes de la física.

Höllenlärm am Autofenster

AutofensterSchlichting, H. Joachim. In: Physik in unserer Zeit 45/3 (2014), S. 151-52

Ein geöffnetes Fenster kann ein fahrendes Auto zu einem Helmholtz-Resonator mit unangenehmen Tönen machen. Mit einer einfachen Rechnung lässt sich die Frequenz des Tones abschätzen.

Katastrophenabwehr beim Coffee to go

Coffee-to-go-1Schlichting, H. Joachim. In: Spektrum der Wissenschaft 4 (2014), S. 56-57

Vorsicht vor Resonanzeffekten: Wer gefüllte Pappbecher durch die Gegend trägt und den Kaffee am Überschwappen hindern will, macht instinktiv das Falsche.

Divergente Schwingungen jeder Art
waren so ziemlich die schlimmste Bedrohung
Thomas Pynchon (geb. 1937)
in »Die Enden der Parabel«

PDF: Katastrophenabwehr beim Coffee to go

Stehaufmännchen, Kolumbus- Eier und ein Gömböc

Ucke, Christian; Schlichting, H. Joachim. In: Physik in unserer Zeit 44/4 (20Clip_14113), S. 191-193

Ein Stehaufmännchen richtet sich von selbst immer wieder auf. Einmal angestoßen, wackelt es als Rollpendel einige Male hin und her. Es gibt zahlreiche Abwandlungen dieses Spielzeugs – teils mit sehr überraschender Wirkung.

PDF: Stehaufmaennchen

Kunst in der Physik

Schlichting, H. Joachim. In: Spektrum der Wissenschaft 43/2 (2012), S. 52 – 53

Es braucht nicht viel, damit sich die glatte Oberfläche einer Flüssigkeit zu einem schönen Muster entfaltet

… dass trotz der Flüssigkeit in der Substanz
eine Solidität in der Form erreicht wird.
Italo Calvino (1923 – 1985)

Einige Ausschnitte des „Tanzes der Fluide“ haben wir auf einem Video eingefangen.

PDF: http://www.spektrum.de/alias/dachzeile/kunst-in-der-physik/1135744

Der schwingende Weihrauchkessel

Schlichting, H. Joachim. In: Spektrum der Wissenschaft 42/7 (2011), S. 58-59

Wird ein pendelnder Körper periodisch angehoben und abgesenkt, gewinnt er Energie. Warum?

http://www.spektrum.de/alias/schlichting/der-schwingende-weihrauchkessel/1072103

Schwingende Puppen und Wolkenkratzer

Ucke, Christian; Schlichting, H. Joachim. In: Physik in  unserer Zeit 39/3 (2008), 139 – 142.

Wohl nur Physiker oder Ingenieure mit ihren spielerischen Neigungen erkennen bei einer Puppe eine Verbindung zur alltäglichen Anwendung der Schwingungstilgung. Diese Technik hat eine große Bedeutung und wird auch in Wolkenkratzern zur Schwingungsdämpfung bei Erdbeben oder starken Winden eingesetzt.

Kann die Auseinandersetzung mit (moderner) Kunst beim Lehren von Physik helfen?

Schlichting, H. Joachim. In: Dietmar Hötteke (Hg.): Naturwissenschaftlicher Unterricht im internationalen Vergleich. Berlin: Lit 2007, S. 409 – 411.

Wenn man Physik und Kunst zusammen denkt, überwiegen normalerweise die Unterschiede. Physik gestattet keinen Raum für Gefühle. Deren Ort sind die Kunst, die Literatur und die Musik. Auf den zweiten Blick wird jedoch klar, dass Physik ohne Gefühle nur die halbe Wahrheit ist…

PDF: Kann die Auseinandersetzung mit (moderner) Kunst beim Lehren von Physik helfen?

Einfache Experimente zur Selbstorganisation – Strukturbildung bei Sand und anderen Granulaten

Sandruettelstruktur004arvNordmeier, Volkhard; Schlichting, H. Joachim. In: Unterricht Physik_17_2006_Nr. 94, S. 28 – 31 (geringfügig geänderte Version)

Natur organisiert sich selbst. Dies zeigt sich in den vielfältigen Mustern und Strukturen der unbelebten wie auch der belebten Natur, Selbstorganisationsphänomene sind jedoch komplex. und ihre Erklärung ist anspruchsvoll. Dennoch ist es möglich, wesentliche Ideen der Selbstorganisation – insbesondere der Strukturbildung – auch Schülerinnen und Schülern in der Sekundarstufe I zugänglich zu machen.

Freihandexperimente mit granularer Materie bieten einen intuitiven Zugang zu Phänomenen der Selbstorganisation. Wir zeigen hier einige der besonderen Eigenschaften von Sandkörnern und an- deren Granulaten. wie sie durch Zufuhr von mechanischer Energie zu kollektivem Verhalten angeregt werden und wie dabei vielfältige, auch ästhetisch ansprechende Muster entstehen können.

PDF: Einfache Experimente zur Selbstorganisation

Tanzende Puppen und rasende Bürsten

Schlichting, H. Joachim. In: Physik in unserer Zeit 36/5, 221 (2005)

Ein auf Borsten stehender Pappbecher oder eine einfache Kleiderbürste werden zu tanzenden und umherrasenden Spielzeugen, wenn man sie geschickt anregt. Ursache ist ein physikalischer Vorgang, der in der Natur und auch in technischen Anwendungen zum Tragen kommt.

PDF: kann beim Autor angefordert werden (schlichting@uni-muenster.de)

 

Der chaotische Prellball

Buttkus, Beate; Schlichting, H. Joachim; Nordmeier, Volkhard: In: G. Kurz: Didaktik der Physik. Vorträge der Frühjahrstagung der DPG Esslingen 1993.

In dieser Aussage von Friedrich Hund wird deutlich, wie schwer es ist, neue Gedanken und Konzepte in die Naturwissenschaften einzubringen. Hund sagte diese Worte Anfang der 60 er Jahre. Aber erst in den letzten 10 Jahren schickt sieh die nichtlineare Physik an, sich innerhalb der Naturwissenschaften zu etablieren. Dieser Vorgang vollzieht sich jedoch gewissermaßen im Blickpunkt der  Öffentlichkeit. In spektakulärer Weise begleiten die Massenmedien und der Sachbuchmarkt die Entwicklungen innerhalb der Naturwissenschaften. Dies ist eine Herausforderung an die Schulphysik wie sie wohl ihresgleichen sucht: Welche Möglichkeit gibt es die Schülerinnen und Schüler an die wesentlichen Aussagen heranzuführen?

PDF: Der chaotische Prellball

Glockenklang im Weinglas

Schlichting, H. Joachim. In: Naturwissenschaften im Unterricht- Physik 39/10, 20 (1991).

Image_2011_05_11_7Die Verkäuferin schnippt kurz mit dem Finger an jedes Weinglas bevor sie es sorgfältig für den Transport verpackt. Ich möchte wissen, warum sie das tut. Um ihren grauen Alltag durch einen Wohlklang aufzulockern? Um diskret auf die akustische Dimension der Weingläser aufmerksam zu machen? Sie erklärt mir, der Klang verrate ihr, ob das Glas in Ordnung sei. Wenn es einen Sprung habe, klinge es nicht, sondern gäbe nur ein schäpperndes Geräusch von sich. Sie demonstriert es an einem zuvor aussortierten, defekten Glas, dessen Defekt kaum zu sehen, aber deutlich zu hören ist.

PDF: Glockenklang im Weinglas

Aus Auf und Ab mach Hin und Her – Parametrische Anregung im Freihandversuch

Schlichting, H. Joachim. Naturwissenschaften im Unterricht- Physik 39/10, 22 (1991).

Auf einer Volkshochschulveranstaltung zum Thema Freihandversuche fragte ich die Teilnehmer eines Kurses, ob es möglich sei, ein Fadenpendel durch rhythmisches Verkürzen des Fadens (gemäß Abb. 1) in eine Hin- und Her- Schwingung zu versetzen. Nach kurzer Überlegung meinte einer der Teilnehmer, das könne nur einer: Münchhausen. Denn das sei genauso möglich oder unmöglich, wie sich selbst am Schopfe aus dem Sumpf zu ziehen.

PDF:  Aus Auf und Ab Hin und Her

Zur Physik der Hui-Maschine

Bachhaus, Udo; Schlichting, H. Joachim. In: Physik und Didaktik 16/3, 238 (1988).

Es wird ein u.a. unter dem Namen Hui-Maschine bekanntes Spielzeug beschrieben und in seiner Funktionsweise aufgrund einer einfachen Modellvorstellung erklärt. Eine kurze Konstruktionsbeschreibung zeigt, daß man das Spielzeug sich leicht selbst herstellen kann.

PDF: Zur Physik der Hui-Maschine

Regular and Chaotic Oscillations of a Rotating Pendulum

Backhaus, Udo; Schlichting, H. Joachim. In: G. Marx (Ed.): Chaos in Education II. Vesprem (Hungary) 1987, pp. 312-317.

One reason of the great success of classical physics is the ability to predict the evolution of a system from which the dynamics (equation of motion) and the initial values are known. But this ability falls with  chaotic systems.  Because of the exponential Increase of small errors in the initial conditions of a chaotic system every prediction of its behaviour becomes Impossible in shortest time. For a long time physicists thought that the chaotic behaviour of a system is due to its complexity. But recently, one found that very simple systems may become chaotic, too. As important as this realisation is the manner of the transition from order to chaos. This transition follows some general patterns: the system announces the breakdown of the deterministic behaviour. Of course, the knowledge of these patterns is of great practical Interest. The rotating pendulum presented here allows to study the transitions between regular and chaotic motions by means of computational simulations. Thereby, complete Feigenbaum scenarios and other transitions may be obtained. The numerical resuits are described in more detail in.

PDF: Regular and Chaotic Oscillations of a Rotating Pendulum

Photoarchiv