//
Artikel Archiv

Sublimation

Diese Schlagwort ist 9 Beiträgen zugeordnet

Skurrile Eispodeste auf dem Baikalsee

VLADIMIRPB / GETTY IMAGES / ISTOCK

H. Joachim Schlichting. Spektrum der Wissenschaft 1 (2022), S. 60 – 61

Das Schöne ist eine Manifestation
geheimer Naturgesetze

Johann Wolfgang von Goethe (1749–1832)

Selbst bei lang anhaltenden tiefen Temperaturen kann die Eisdecke eines Sees allmählich schrumpfen. Das liegt an der Wärmestrahlung des Tageslichts. Aufliegende Steine schirmen diese unter sich ab, während das restliche Eis abgetragen wird. Sie finden sich daher schließlich auf einer Säule balancierend wieder.

In unseren Regionen trifft man auf einem zugefrorenen Gewässer zuweilen Steine, Blätter und Äste an, die sich in einer Mulde befinden, so als wären sie dort unter dem eigenen Gewicht eingesunken (siehe »Schmelzabdruck«). Der Eindruck trügt. Vielmehr absorbieren sie die direkte Sonnenstrahlung und erwärmen sich deswegen über den Gefrierpunkt hinaus. Bei nicht allzu tiefen Temperaturen entsteht zunächst Schmelzwasser und dann mit dessen Verdunstung eine passgenaue Mulde, die bei länger andauernder Sonneneinwirkung immer tiefer wird. Das Eis an sich ist weitgehend transparent und nimmt nur wenig Sonnenenergie auf. Es wird an unberührten Flächen in der Umgebung also kaum angegriffen.

Manchmal lässt sich aber eher das Umgekehrte beobachten, etwa bei lang anhaltenden tiefen Temperaturen auf schneefreien, zugefrorenen Seen wie dem Baikalsee in Sibirien. Dort sind Steine zwar auch von einer Mulde umgeben, aber statt darin zu liegen, scheinen sie vielmehr darüber zu schweben. Tatsächlich werden sie von einem schmalen Eispodest getragen, das aus der Vertiefung herausragt. Wegen der visuellen Ähnlichkeit zu meditativ genutzten Steintürmchen werden solche Fundstücke gelegentlich als Zen-Steine bezeichnet (siehe »Zen-Stein«).

Die Kontur der Zen-Steine erinnert an pilzartige Felsformationen, wie sie beispielsweise im türkischen Kappadokien zu bewundern sind (siehe »Feenkamine«). Solche »Feenkamine« entstehen, indem härteres Gestein, das auf weicherem liegt, an manchen Stellen die Erosion durch Wasser und Wind abschirmt und damit verzögert.

Es war bereits bekannt, dass die Erosion auch beim Entstehen der Zen-Steine eine wesentliche Rolle spielt. Bisher ließ sich allerdings nicht erklären, welcher Mechanismus bei derart tiefen Temperaturen das Eis so stark abträgt. Denn einerseits ist die direkte Sonneneinstrahlung jahreszeitlich bedingt sehr schwach, und zum anderen erfolgt die Strukturbildung der Zen-Steine unabhängig davon, ob und aus welcher Richtung die Sonne scheint.

Im Oktober 2021 haben die Physiker Nicolas Taberlet und Nicolas Plihon von der Universität Lyon das Problem gelöst. Sie konnten sowohl experimentell als auch anhand eines physikalischen Modells zeigen, dass die Erosion durch die Sublimation von Eis bewirkt wird. Beim Sublimieren einer Substanz geht diese direkt vom festen in den gasförmigen Zustand über. Das flüssige Stadium wird sozusagen übersprungen. Das ist kein ungewöhnlicher Vorgang – im Winter verschwindet Schnee selbst in unseren Breiten unter bestimmten Bedingungen, ohne zuvor flüssig geworden zu sein (siehe »Spektrum« 2/2020, S. 78). Ein solcher unmittelbarer Übergang geschieht außerdem beispielsweise beim festen Kohlenstoffdioxid, das umgangssprachlich bezeichnenderweise Trockeneis heißt und bei Umgebungstemperatur in einer stürmischen Reaktion gasförmig wird (siehe »Spektrum« 11/2009, S. 52).

Bei der Sublimation von Eis finden Schmelzen und Verdampfen gewissermaßen gleichzeitig statt. Daher muss die dazu nötige Wärme für beides auf einmal aufgebracht werden; obendrein ist beim Wasser jeweils relativ viel Energie dafür erforderlich. Woher stammt sie? Eis absorbiert Licht sichtbarer Wellenlängen kaum. Deswegen kommen fast ausschließlich die langwelligen Anteile des diffusen Tageslichts in Frage, das aus allen Richtungen einstrahlt.

Aus dessen Intensität lässt sich die Rate der Eiserosion durch Sublimation abschätzen. Dabei zeigt sich: Der Schwund geht sehr langsam vonstatten. Dabei schirmt ein auf dem Eis liegender Stein die unter ihm befindliche Fläche ab und schützt sie vor Verlusten. So senkt sich allmählich das Eisniveau außerhalb des Schattens, und der Stein bleibt auf einem Podest liegen. Dieses scheint aus der sinkenden Eisfläche herauszuwachsen und wird dabei der diffusen Strahlung des Tageslichts stärker ausgesetzt. Dadurch trifft die von überall kommende Wärme auch auf die zunehmend hohen Seiten der Eissäule, die zu einem immer schmaleren Stiel erodiert – der schließlich unter dem Gewicht des Steins bricht.

Taberlet und Plihon haben ihre Theorie durch Laborexperimente abgesichert. Sie führten sie in einer Vakuumkammer durch, wie sie zur Gefriertrocknung etwa von Lebensmitteln verwendet wird. Bei den dort herrschenden niedrigen Drücken und Temperaturen konnten die beiden Physiker die Sublimationsrate wesentlich erhöhen und damit die Erosionsdauer entsprechend verkürzen. Sie stellten die Geschehnisse auf dem Baikalsee gewissermaßen im Zeitraffer nach. Statt Steine verwendeten sie kleine Metallplatten. Diese wurden mit dem Schrumpfen der umliegenden Eisschicht in der Kammer schnell auf ein immer höheres und schmaleres Podest gehoben. Bei Versuchen mit Plättchen unterschiedlicher Art war der Effekt unabhängig vom Material. Insbesondere spielte die Wärmeleitfähigkeit des Stoffs keine Rolle.

Bei einem näheren Blick fällt auf: Ähnlich wie bei den eingangs genannten Blättern auf hiesigen zugefrorenen Flächen bildet sich unter den Zen-Steinen ebenfalls eine Mulde. Denn sie absorbieren – anders als Eis – auch Energie im sichtbaren Bereich des Tageslichts und geben diese als Wärmestrahlung an die Umgebung ab. Das erodiert die in unmittelbarer Nähe befindliche Eisfläche zusätzlich. Hier zu Lande bringt das die Unterlage üblicherweise zum Schmelzen, in Sibirien aber erhöht es wegen der sehr tiefen Temperaturen lediglich die Sublimationsrate.

Quelle

Taberlet, N. , Plihon, N.: Sublimation-driven morphogenesis of Zen stones on ice surfaces. PNAS 2021 Vol. 118 No. 40 e2109107118

Werbung

Schneeverlust unter dem Gefrierpunkt

H. Joachim Schlichting. Spektrum der Wissenschaften 2 (2020), S. 72

Oh welch ein Schreck:
Der Schnee ist weg!
Wo ist er nur geblieben?

Anita Menger (*1959)

Manchmal verschwindet die Schneedecke, obwohl das Thermometer unter null Grad anzeigt. Oder aber sie schmilzt selbst bei Plusgraden kaum. Die Temperatur allein ist nicht entscheidend – bei den Vorgängen spielen weitere Kennzahlen eine wichtige Rolle. Weiterlesen

Ein Schauspiel mehrerer Hole-punch Clouds vor dem abendlichen Fenster

Vorgestern Abend  konnte ich vom Fenster meines Arbeitszimmers aus ein seltsames Himmelsschauspiel beobachten. Der Himmel war von einer Altocumulus stratiformis Bewölkung bedeckt und öffnete sich an einer Stelle, wobei eine strähnenförmige Wolke aus dem entstehenden Wolkenloch herauszuströmen schien (oberes Foto). Ich wurde an das bereits früher beobachtete Phänomen, der sogenannten Hole- punch Cloud, erinnert und ich vergewisserte mich bei der Wetterexpertin Claudia Hinz, dass ich mich nicht täuschte. Wie dort bereits beschrieben fällt die bizarre Wolkenformation gewissermaßen aus dem gleichzeitig entstehendem und – wie ich diesmal über eine längere Zeitspanne beobachten konnte – sich vergrößerndem Loch auf die Erde. Sie erreicht diese jedoch nicht, weil die Eiskristalle, aus der sie besteht, vorher sublimieren, also in Wasserdampf übergehen. Weiterlesen

Hole punch – Eine aufgeschlitzte Wolke

An einem kalten Wintermorgen entdeckte ich kurz vor Sonnenaufgang in einer flachen Schicht von Altocumuluswolken eine längliche Scharte, die einen Durchblick auf darüber liegende, bereits von der Sonne erhellte blaue Himmelspartien erlaubte. Es sah aus, als wäre ein Wolkenstreifen durch dieses Loch gleichsam hindurch gesackt. Er hing im orangenen Licht der aufgehenden Sonne und wurde seiner luftigeren Konsistenz entsprechend von diesem Licht geradezu durchglüht. Dieser Streifen hatte die typische luftige und strähnige Konsistenz von Cirruswolken (was auf dem Foto allerdings nicht gut zu erkennen ist. Aber wie man – denke ich – sehen kann, liegt dieses Wolkengebilde noch unterhalb der Altocumulusschicht. Ein schönes – aber auch kompliziertes Phänomen, das letztlich auf den Einfluss des Homo Faber zurückgeht. Wer es genauer wissen will, muss sich den folgenden Text ansehen.

Weiterlesen

Wäsche im Wind

solare_waescjetrocknung_rvTollt der Wind über Feld und Wiese,
Hat seinen Spaß er überall,
Aber am liebsten neckt er die Liese
Mit einem tückischen Überfall.

Will sie ihr Zeug auf die Leine bringen,
Zerrt er: Liese, dies Hemd ist mein!
Um jedes Laken muss Liese ringen,
Jedes Stück will erobert sein. Weiterlesen

Eiszapfen – zum Trocknen an die Leine gehängt

Als ob die Leine auch im Winter nicht ungenutzt bleiben sollte, ist sie vollbesetzt mit Eiszapfen.
Auch wenn die Periodizität nicht ganz perfekt ist, mit der die Zapfen sich über die Leine verteilen, wird nicht vom Prinzip abgewichen: Auch dort, wo die vorgesehene Stelle von einer vergessenen Klammer bereits besetzt ist, wird der Zapfen eben an die Klammer gehängt und zwar deutlich.
Übrigens ist die Einlassung, die Zapfen hingen hier zum Trocken, nicht nur witzig. Versteht man unter Trocknen, dass die Zapfen allmählich verschwinden, so liegt man ganz richtig. Durch Sublimation gehen nämlich die Eismoleküle direkt in Wasserdampf über mit der Folge, dass trotz frostigen Wetters die Zapfen allmählich kürzer wurden. Eine natürliche Art der Gefriertrocknung.

Hat sich die Luft zu weit ausgedehnt?

trockeneis_img_4761_rv»Die Luft hat sich zu weit ausgedehnt, darum wird sie nie ein Saphir.«

Friedrich Hebbel (1813 – 1863) Weiterlesen

Wolken – wie mit dem Messer geschnitten: Hole punch

WolkenlöcherSchlichting, H. Joachim: Wolken – wie mit dem Messer geschnitten. In: Spektrum der Wissenschaften 44/7 (2013) 56 – 57

Ein Flugzeug, das durch Wolken aus unterkühlten Tröpfchen fliegt, kann eine Kettenreaktion an Kristallisationsprozessen auslösen. Es entsteht ein „hole punch“.

Es ist einfach genug: ein Problem entsteht dort, wo ein Loch ist,
im Verständnis, in der Begründung, im Erinnern.
Schwieriger indes: das Geheimnis solcher Leere zu durchdringen,
ohne den gestörten Zusammenhang erst recht zu durchlöchern.
Christiaan L. Hart Nibbrig (*1944)

PDF: Wolken – wie mit dem Messer geschnitten

Spirale 1 – Spiralnebel in der Wasserschale

Trockeneis_IMG_4781Schlichting, H. Joachim. In: Spektrum der Wissenschaft 11 (2009), S. 52

Jets aus Kohlenstoffdioxidgas versetzen Trockeneiskrümel in heftige Bewegung.

… die Spirale ist dort, wo die Materie (…) beginnt,
etwas Lebendiges zu werden.
Friedensreich Hundertwasser (1928 – 2000)

Ein Kurzvideo zeigt den „Tanz des Trockeneises

Photoarchiv