//
Artikel Archiv

Verdunstung

Diese Schlagwort ist 19 Beiträgen zugeordnet

Reflektierende Tropfen

Normalerweise kennt man Wassertropfen als etwas plattgedrückte Kugeln, wenn sie beispielsweise auf einer ebenen Fläche hausen. Die Schwerkraft und die Oberflächenkraft machen ihnen zu schaffen, ihrer wahren Haltung als Tropfen gerecht zu werden. Aber auch der umgekehrte Fall, wenn sie durch die Schwerkraft etwas in die Länge gezogen werden, ist nicht ideal, weil präkar (siehe Foto). Denn es fehlt nicht viel und die Oberflächenkraft reicht nicht mehr aus, ihr zunehmendes Gewicht (durch Anlagerung von Wasserdampfmolekülen) zu kompensieren. Der nasse Boden zeigt, was ihren vorausgegangenen Kollegen passiert ist und auch ihnen in Kürze bevorsteht. Aber solange sie können, reflektieren sie (über) ihre Umgebung und lassen uns daran teilhaben.

Polygonale Sandmuster

Dieses polygonale Muster sah ich in einem dicht am Meer gelegenen hinter einigen Dünen tief gelegenen Sandgebiet. Obwohl es während der Beobachtung (Fotografie) völlig trocken war, vermute ich, dass die Musterung darauf zurückzuführen ist, dass unterhalb des Sandbodens das Grundwasser in geringer Tiefe anzutreffen ist. Und dieses Grundwasser dürfte wegen der Nähe des Meeres salzhaltig sein (Brackwasser). Durch die Verdunstung eines Teil des in Kapillaren zwischen den Sandkörnern aufsteigenden Salzwassers an der Oberfläche des Sandes bleibt gelöstes Salz zurück. Es führt allmählich zu einer Anreicherung des Salzes an der Oberfläche und damit zu einer helleren Färbung. Da ein Teil des Wasser an den Rändern solcher Polygone durch absinkendes Wasser innerhalb der Polygone teilweise kompensiert wird, entsteht ein solches an eine Bénardkonvektion erinnerndes Muster.

Dies ist eine grobe vorläufige Vermutung und muss weiter untersucht werden.

Optische Täuschung auf der Straße

Als ich einen Spaziergang auf einer ziemlich ramponierten Asphaltstraße unternahm, den Blick in die Ferne schweifen ließ und auf die Straße nur deshalb achtete, um nicht zu stolpern, geriet ich plötzlich ins Stolpern. Es lag zwar kein Grund vor, denn die Straße war an der Stelle nicht schlechter als anderswo, aber sie trug eine „Zeichnung“ die tief in unsere abendländische Wahrnehmung integriert ist. Die wie auch immer durch den Einfluss von Witterung und Benutzung entstandenen Riefen verliefen gerade so, wie man es gelernt hat eine Kuhle auf einem Blatt Papier eine Kuhle zu zeichnen: lauter zum Zentrum hin (dort wo es am tiefsten sein sollte) schwungvoll gezogene Linien.
Es ärgerte mich schon ein wenig, dass ich mich in der vertrauten räumlichen Welt (unbewusst) von Riefen auf einer weitgehend ebenen Fläche dermaßen täuschen ließ. So wäre es beinahe dazu gekommen, dass mich nicht ein reales, sondern ein eingebildetes Hindernis zu Fall gebracht hätte. In welcher Welt lebe ich eigentlich?
Noch ein Wort zur dunklen Färbung des Asphalts. Auch dabei handelt es sich nicht um einen echten Unterschied zur hellen Färbung. Das Wasser eines kurz vorher niedergegangenen Regens hat sich in den Riefen länger gehalten als im übrigen Bereich. Denn die Verdunstungsrate ist überall gleich. Nasse Stellen pflegen dunkler und farbintensiver zu sein als helle, das hatten wir früher schon einmal diskutiert.

Kinetische Farben auf einer Seifenblase

Wenn man das obige Foto sieht, denkt man wohl eher an ein abstraktes Kunstwerk als an einen natürlichen Vorgang. Es handelt sich dabei um einen kontrastverstärkten Ausschnitt aus einem turbulenten Geschehen auf einer Seifenblase, die hier gemeinsam mit einer Schwesterblase etwas genauer in den Blick genommen wird (unteres Foto, rechte Blase). Die Doppelblase ist auf einem Weinblatt hängen geblieben und zeigt auf ihrer Oberfläche das, was im oberen Foto ausschnittsweise wiedergegeben wird. Angefacht durch Luftbewegungen und Degenerationsprozesse in der Seifenhaut ist allerlei los auf den Blasen.

Eine Wolke wie ein Pfeil

Aufwärts

An diesem windstillen Tag sieht man schon von weitem eine steil bis in die Wolken reichende vermeintliche Rauchfahne. Aus einem günstigen Blickwinkel (Foto) erkennt man, dass es kein Rauch, sondern Wasserdampf ist, der senkrecht über dem Kühlturm eines Kohlekraftwerks steht. Man kann auch sagen, es ist eine Wolke. Eine besondere Wolke, denn sie ignoriert die diffuse natürliche Bewölkung, die an diesem Tag natürlicherweise vorhanden ist. Ja, sie durchdringt sogar eine kaum als Wolke zu erkennende Schicht wie ein Pfeil, dessen Spitze darüber wieder zum Vorschein kommt.
Diese Konstellation gibt zum einen Hinweise auf die Höhe der Wolken und zum anderen zeigt sie wie schwierig es ist, am bewölkten Himmel die Anordnungen und Entfernungen zwischen den verschiedenen Wolkenschichten einigermaßen plausibel einschätzen zu können.
Der enorme Auftrieb, der sich in dieser Nebelfahne über dem Kühlturm zeigt, weist auf einen deutlichen Temperaturunterschied zwischen der Umgebung und dem aufsteigenden und sofort kondensierenden Wasserdampf und damit indirekt auch auf die zur Kühlung eines konventionellen Kraftwerks nötigen Energieverluste hin.

Die Sonne spinnt…

…jedenfalls mischt sie sich ins Spinnennetz ein und scheint die zentralen Stellen des Netzes wegzubrennen. Das ist natürlich eine Täuschung, die auf eine physiologische Überforderung bei der menschlichen Wahrnehmung (Irradiation) und eine technische Überforderung bei der Kamera (Blooming) zurückzuführen ist. Interessanterweise führt das zu parallelen Wirkungen mit der Folge, dass das Foto in etwa dasselbe zeigt, was auch das Auge sieht.
Die Sonne nützt sogar der Spinne, indem sie dazu beiträgt, das Netz von den nächtlichen Tautropfen zu befreien. Dadurch wird das Netz wieder weitgehend unsichtbar (wie man bereits jetzt an einigen scheinbar fehlenden Teilstücken erkennen kann) – eine Voraussetzung dafür, dass die Insekten nicht sofort ein materielles Hindernis erkennen und der Spinne ins Netz gehen.
Auf diesem Foto beeindruckt aber besonders, dass die Spinne auch ohne etwas von physikalischen Zusammenhängen zu verstehen die Elastizität der Schilfblüte für ihre Zwecke ausnutzt. Indem sie ihre Fäden zwischen der gebeugten Blüte und dem übrigen Halm spannt, wird das Netz umgekehrt durch die rückwirkenden Kräfte des über die schwerkraftsbedingte Neigung hinaus gebogenen Halms straff gehalten. Das erspart ihr aufwändige Spannvorrichtungen, wie sie ansonsten oft benötigt werden. Ähnlich clever handelte die Spinne, die ein aufgewölbtes Blatt zum Spannen nutzte.

Rätselfoto des Monats Mai 2021

Wie kommt es zu den spektralen Farbsystemen?

.


Erklärung des Rätselfotos des Monats April 2021

Frage: Wie kommt es zu den Feuchtigkeitsstrukturen?

Antwort: Es ist neblig, feucht und kalt (wenige Grad über Null). Aber die noch sehr tief stehende, den leichten Nebel durchdringende Sonne verheißt einen sonnigen Tag. Der aluminiumverkleidete Universitätsbau ist mit Feuchtigkeit „beschlagen“. Die Feuchtigkeit rührt von den Wassertröpfchen des leichten Nebels her, die durch den Wind gegen die Gebäudewand strömen und hier haften bleiben. Das Phänomen ist in manchen warmen und unter Trockenheit leidenden Ländern vertraut. Der Morgennebel wird von einer Brise beispielsweise gegen die Olivenbäume getrieben, an deren Stämmen Wassertröpfchen hängen bleiben und anschließend herunter laufen. So kommt es auch ohne Regen zu einer mäßigen aber regelmäßigen Bewässerung.
Es bleibt die Frage, warum die Wand nicht gleichmäßig benetzt wird, sondern ovale feuchte Gebiete innerhalb der rechteckigen, von durchgehenden Metallsprossen begrenzten Felder entstehen. Die trockenen Ränder sind Ausdruck der Tatsache, dass der Wärmeübergang von innen nach außen ungleichmäßig erfolgt. Die Felder sind innen mit Isoliermaterial ausgefüllt. Nicht aber die Begrenzungssprossen. Sie stellen offenbar relativ gut leitende Wärmebrücken dar. Der dadurch bedingte größere Energiestrom führt zu einer schnelleren Verdunstung des dünnen Wasserfilms als in den wärmeisolierten Feldern. Da sich die von den Sprossen abgeleitete Wärme auch noch etwas seitlich ausbreitet, in den Ecken sogar von zwei senkrecht miteinander verbundenen Sprossen, ergeben sich zwangsläufig Abrundungen, die zu den ovalen Bereiche führen, in denen die Isolierung gut und die Verdunstung des Wassers nicht so stark ist.

Weinender Wein

H. Joachim Schlichting. Spektrum der Wissenschaft 4 (2021), S. 68 – 69

Wie oft ein Glas Wein ein System erzeugt

Georg Christoph Lichtenberg (1742–1799)

Schwenkt man ein alkoholisches Getränk im Glas, rinnen an dessen Innenwand Tropfen herab. Sie entstehen, weil verdunstender Alkohol einen dünnen Film aus der Flüssigkeit in Form einer instabilen Stoßfront hochsaugt.

Weintrinker schwenken ihr Glas, um die Aromen besser zur Geltung zu bringen. Dabei bilden sich an der Innenseite Tropfen, die in das Getränk zurückfließen. Das Phänomen ist vielen Genießern vertraut und erlaubt gewisse Rückschlüsse auf die Konzentrationen der enthaltenen Stoffe – beispielsweise ist es besonders bei hochprozentigen Vertretern gut zu beobachten. Da die entstehenden Figuren ein wenig an Kirchenfenster erinnern, werden sie zuweilen auch so genannt.
Dass Wein auf diese Weise gewissermaßen Tränen vergießt, ist seit langem bekannt. Der englische Physiker Charles Vernon Boys (1855–1944) ging in seinem früher sehr populären Buch über Seifenblasen sogar davon aus, die Erscheinung würde bereits »in den Sprüchen Salomons Kapitel 23, Vers 31 erwähnt: Siehe den Wein nicht an, wenn er rot ist, wenn er seine Farbe dem Glase gibt, und wenn er von selbst aufwärts steigt.« (In der deutschen Bibelübersetzung Luthers lautet die Stelle etwas anders.)
Die erste physikalische Erklärung lieferte James Thomson (1822–1892) Mitte des 19. Jahrhunderts, doch die Details des Alltagsphänomens beschäftigen die Wissenschaft bis heute. Im März 2020 hat eine Forschergruppe um die Mathematikerin Andrea Bertozzi von der University of California in Los Angeles eine Arbeit dazu publiziert. Die Untersuchung bezieht die Geometrie des Glases ein und soll eine vollständige quantitative Beschreibung der Tränen liefern. Das Phänomen wirkt auf den ersten Blick einfacher, als es tatsächlich ist. Zum Verständnis ist es nötig, das Wechselspiel vielfältiger physikalische Aspekte zu entwirren.
Zunächst kommt die Tendenz gewisser Flüssigkeiten ins Spiel, Flächen zu benetzen. Schaut man sich ein Glas mit Wasser darin etwas genauer an, erkennt man, wie letzteres ein Stück weit an der Wand aufsteigt und einen typischen konkaven Meniskus hervorbringt. Das passiert, weil zur Ausbildung einer Grenzfläche zwischen zwei Substanzen Grenzflächenenergie nötig ist. Die Natur tendiert dazu, diese möglichst gering zu halten, und bei Wasser und Glas ist weniger Energie erforderlich als im Fall von Luft und Wasser.
Der Weg nach oben endet allerdings bald: Der Energiegewinn infolge des Anhaftens wird durch die potenzielle Energie, die das Medium nach unten zieht, mit zunehmender Höhe aufgewogen. Der Vorgang heißt auch Kapillareffekt. Wenn man nämlich das Glas auf ein Röhrchen mit winzigem Durchmesser verengt, reduziert das die anzuhebende Masse der Flüssigkeitssäule enorm, und das Wasser kann weiter steigen. In Bäumen spielt das eine wesentliche Rolle beim Transport von der Wurzel bis in die Blätter (siehe »Spektrum« Juli 2015, S. 50).
Wein und andere alkoholische Getränke bestehen vor allem aus Wasser und Alkohol sowie einigen für den Geschmack entscheidenden Stoffen. Beide Flüssigkeiten gehen zwar eine homogene Mischung ein, verhalten sich aber in physikalischer Hinsicht unterschiedlich. Alkohol verdunstet wesentlich bereitwilliger, hat also eher die Tendenz, in den gasförmigen Zustand überzugehen. Das ist unter anderem auf die größere Grenzflächenspannung des Wassers zurückzuführen, die der Verdunstung entgegenwirkt. Der Alkohol verfliegt daher früher – das wird bei der Destillation zum Abtrennen des »Weingeistes« ausgenutzt. Der Prozess läuft in der dünnen Schicht an der Glaswand besonders stürmisch ab. Dort ist die Grenzfläche zwischen Luft und Wein im Verhältnis zum Volumen sehr groß, und der Anteil des Wassers nimmt rasch zu. Dessen Anreicherung wiederum steigert die Grenzflächenspannung im Flüssigkeitsfilm.
Zur Verdunstung ist Energie nötig, die der Umgebung entzogen wird, also vor allem dem Wein selbst. Damit ist eine verhältnismäßig starke Abkühlung verbunden. Einen lebhaften Eindruck von der Verdunstungskälte kann man sich verschaffen, indem man einen Tropfen Alkohol auf dem Handrücken verteilt und die Hand schwenkt oder anbläst (siehe »Spektrum« Januar 2012, S. 52). Die Grenzflächenspannung nimmt mit sinkender Temperatur zu, was zusätzlich zum Spannungsunterschied zwischen dem dünnen Film und dem übrigen Wein beiträgt.
Das führt zu Ausgleichsströmungen: In dem Maß, in dem vor allem der Alkohol verdunstet, wird Wein aus dem Glas nachgezogen. Der Effekt ist nach dem italienischen Physiker Carlo Marangoni (1840–1925) benannt, der ihn schon im 19. Jahrhundert eingehend studiert hat. Jedoch war bislang noch nicht geklärt, wie der Prozess im Einzelnen abläuft. Denn stiege die Flüssigkeit in einem Film von einheitlicher Dicke auf, wäre nicht einzusehen, wieso sie nicht einfach ähnlich gleichmäßig wieder zurückfließen sollte – statt es in Form von Tränen zu tun.
Bertozzi und ihre Kollegen haben nun mit einem mathematischen Modell und Experimenten eine Lösung des Problems gefunden. Sie gehen unter anderem davon aus, dass die Grenzflächenspannung mit der Höhe des Films gleichmäßig zunimmt. Dann bewegt sich die Flüssigkeit in einer ringförmigen Welle nach oben. Dabei handelt es sich – in wissenschaftlicher Terminologie – um eine »umgekehrte unterkompressive Stoßwelle«. Trotz der äußeren Ähnlichkeit mit einer normalen Stoßwelle lässt hier das anhaltende Ziehen infolge der Marangoni-Strömung das Gebilde instabil werden.
Innerhalb der Schicht rücken einzelne Fronten nach, die von der Grenze zum Weinmeniskus ausgehen. Sie laufen gegen die bereits an der Glaswand befindliche, mit Wasser angereichte Flüssigkeit an. Dann lassen kleinste Inhomogenitäten entlang der Welle diese an solchen Stellen zerreißen. Um die Grenzflächenenergie zu minimieren, ziehen sich die Bruchstücke sofort zu separaten Tropfen zusammen, die wie Tränen am Rand herabfließen. Das Szenario wiederholt sich, solange ausreichend Alkohol im Wein ist. Angetrieben werden diese Vorgänge letztlich durch die Tendenz von Flüssigkeiten, sich durch Verdunstung gleichmäßig im zur Verfügung stehenden Raum zu verteilen. Sofern wir sie nicht daran hindern, indem wir sie vorher konsumieren.

Quelle

Dukler, Y. et al.: Theory for undercompressive shocks in tears of wine, Physical Review Fluids 5, 2020

Originalversion: Weinender Wein

Das Wassertröpflein

Tröpflein muss zur Erde fallen,
Muss das zarte Blümchen netzen,
Muss mit Quellen niederwallen,
Muss das Fischlein auch ergötzen,
Muss im Bach die Mühle schlagen,
muss im Strom die Schiffe tragen,
und wo wären denn die Meere,
wenn nicht erst das Tröpflein wäre* Weiterlesen

Durchsichtiges Holz

Als ich am frühen Morgen an einem Bauernhof vorbeiging staunte ich nicht schlecht, als das massive Holztor durchsichtig zu sein schien. Jedenfalls zeichneten sich die auf der Innenseite angebrachten Verstrebungen der Tür durch einen dunkleren Farbton deutlich ab, so als ob die von der anderen Seite in den Stall hineinleuchtende Sonne (siehe Lichtstreifen unter dem Tor hindurch) es nur nicht schaffte, die dicken Verstrebungen des Tors zu durchleuchten und aufzuhellen.
Da das Holz des Tors sehr massiv ist, kommt diese naheliegende Erklärung nicht infrage. Dennoch ist die Sonne Verursacherin des Phänomens. Die Außenseite des Tors ist noch nass von einem kürzlich vorausgegangenen Regenschauer. Die noch tief stehende Sonne, die durch das geöffnete gegenüberliegende Tor hindurch scheint, erwärmt die  Innenseite des auf der Außenseite regennassen Tors. Die dadurch bedingt Aufheizung des Tors führt dazu, dass die Wärme als erstes an den dünnen Stellen die Außenseite erreicht und dort die Verdunstung der Regentropfen  beschleunigt.  Dass wir dies überhaupt beobachten können, ist der Tatsache zu verdanken, dass nasses Holz wesentlich dunkler aussieht als trockenes Holz.

Trockenrisse bei Anselm Kiefer

Am 8. März feierte Anselm Kiefer seinen 75. Geburtstag. Das nehme ich zum Anlass an einen künstlerischen Aspekt seines Werkes zu erinnern, in dem er die reale Strukturbildung, wie sie beispielsweise bei der Bildung von Trockenrissen wirksam ist, in einige seiner großformatigen Bilder integriert. Ich hatte vor einigen Jahren Gelegenheit diese oft überdimensional großen Bildskulpturen im Grand Palais in Paris zu kennen und schätzen zu lernen.
Kiefer hat offenbar die natürlichen Vorgänge selbst in seine künstlerischen Aktivitäten integriert und damit diesen oft übersehenen und missachteten Alltagsphänomenen besondere Wertschätzung und ästhetischen Rang verliehen. Ich will hier nur das Beispiel „Palmsöndagen“ (Palmsonntag) nennen, auf das ich hier aus Urheberechtsgründen nur durch einen Link verweisen kann.
Stattdessen sieht man auf dem hier gezeigten Foto Trockenrisse im Watt des Hamswehrumer Tiefs (Ostfriesland), die eine ganz ähnliche Struktur wie in einem Detail von Palmsöndagen aufweisen.
Obwohl Trockenrisse etwa in Bildern von ausgedörrtem Ackerland in Afrika, negativ besetzt sind, gibt es andere Kontexte, in denen sie ihr ästhetisches Potenzial voll entfalten. Ich denke da nicht einmal an die polygonalen Risse in alten Gemälden, die gewissermaßen einen Teil der Patina derselben ausmachen und selbst bei Restaurierungen beibehalten werden, sondern vor allem an die immer wieder neu entstehenden Rissstrukturen  in austrocknenden Pfützen und anderen Feuchtgebieten.
Wenn schlammhaltiger Boden austrocknet verdunstet das Wasser. Dieser Substanzverlust macht sich darin bemerkbar, dass in der Oberfläche eine Zugspannung entsteht. Diese wird schließlich so groß, dass die Oberfläche reißt. Dabei geht sie wie nach den Naturgesetzen nicht anders möglich in ein polygonales Netz aus Rissen über.
Wer sich mehr Details zur Entstehung solcher Rissstrukturen wünscht, schaue hier oder hier oder hier.

 

Wäsche im Wind

solare_waescjetrocknung_rvTollt der Wind über Feld und Wiese,
Hat seinen Spaß er überall,
Aber am liebsten neckt er die Liese
Mit einem tückischen Überfall.

Will sie ihr Zeug auf die Leine bringen,
Zerrt er: Liese, dies Hemd ist mein!
Um jedes Laken muss Liese ringen,
Jedes Stück will erobert sein. Weiterlesen

Saline von Fuencaliente auf La Palma oder: Wie kommt das Salz aus dem Meer?

Farbenprächtige-SalinenEingebettet zwischen dem Blau des Meeres und dem dunklen Vulkangestein wird die Saline von Fuencaliente an der Südspitze der Kanareninsel La Palma mit ihren sanften Gelb- bis Rottönen und den weißen Schütthaufen geernteten Salzes zu einem faszinierenden Anblick. Insbesondere nach einer Tageswanderung durch die Vulkanlandschaft findet man hier eine so wohl nicht erwartete Entlastung der dunklen durch die hellen Töne. Die Saline von Fuencaliente ist die einzige noch in Betrieb befindliche Meersalzgewinnungsanlage der kanarischen Provinz Tenerife. Weiterlesen

Rätselfoto des Monats November 2016

130_tropfen_rvFrage: Wie kommt es zu dieser künstlerisch anmutenden Struktur?

__________________________________________________________________

Erklärung des Rätselfotos des Monats Oktober 2016

Frage eines Kindes: Warum hebt er nicht ab?

Antwort: Keine dumme Frage, denn das Kind weiß, dass wenn es seinen Ballon loslässt, dieser sich unwiederbringlich in die Luft erhebt. Aber eine kleine, sehr grobe Überschlagsrechnung zeigt, dass die Befürchtung des Kindes völlig unberechtigt ist.
Man kann leicht abschätzen, ob die Bedenken des Kindes berechtigt sind. Ein Latexballon mit 30 cm Durchmesser hat ein Volumen von etwa 14 Liter. Ein Liter Luft wiegt 1,2 g. Ersetzt man die Luft durch Helium, das 0,18 g pro Liter wiegt, so ist der Ballon pro Liter ungefähr 1 g, also insgesamt 14 g leichter. Da die Latexhülle etwa 4 g wiegt, so ergibt sich eine Tragkraft von 10 g. Wenn man also 1/10 einer Tafel Schokolade (100 g) dranhängt, würde der Ballon in etwa schwerelos sein. Um genügend schnell aufsteigen zu können, darf man nur einige Gramm (vielleicht 3 Gramm) weniger dranhängen. Es bliebe eine Tragkraft von 7 g. Ein Mensch mit einer Masse von 70 kg würde erst aufsteigen, wenn er an einer Traube von 10000 Ballons hinge.
Das ist viel, wie man sich an der Größe der Traube klarmachen kann, die sich ergäbe, wenn man die kugelförmigen Latexballons kugelförmig zusammenbände, was natürlich nur näherungsweise gelänge, hier aber angenommen wird, um eine einfache Abschätzung machen zu können.
Das Volumen der großen Kugel wäre 10000 mal so groß wie das eines einzelnen Ballons, wenn man davon ausginge, dass die Kugeln ohne Zwischenraum aneinander lägen. Aber das ist nicht realisierbar. Man schafft es höchstens, die Kugeln bei kleinstmöglichen Zwischenräumen aneinanderzupacken. Das wäre – wenn ich mich nicht verrechnet habe – bei einer „unendlichen“ Kugelpackung des Raumes mit einem Füllgrad von 74% möglich. So käme man auf einen Kugeldurchmesser von 7,14 m; in Wirklichkeit wäre es also noch mehr.
Bei Folienballons – mit solchen haben wir es auf dem Foto zu tun – ist die Situation noch ungünstiger. Da der Ballon bei etwa gleichem Volumen ca. 10 g wiegt, würde der Rest kaum noch für eine Nutzlast reichen. Daher reicht ein relativ kleine Masse, um die Ballontraube am Abheben zu hindern. Man gibt meist noch etwas Masse hinzu, um auch gegen normale Windböen gewappnet zu sein.

 

 

Das Rätsel von Mpemba

MpembaSchlichting, H. Joachim. In: Spektrum der Wissenschaft  9  (2015), S.40 – 41

Sagt Ihnen Mpemba etwas? Hinter dem fremdartigen Namen steckt das ungewöhnliche Phänomen, dass heißes Wasser unter sonst gleichen Bedingungen schneller gefriert als kaltes. Der »Mpemba-Effekt« scheint der physikalischen Intuition zu widersprechen. Und doch ist es so. Das Phänomen ist seit vielen Jahren Gegenstand der Forschung, ohne dass bislang eine allgemein akzeptierte Erklärung verfügbar wäre. Wir diskutieren hier eine Lösung des Problems, in der die größeren Strömungsbewegungen im anfangs heißen Wasser entscheidend dafür ist, dass es schneller gefriert als das kalte.

»Wenn das Wasser vorher erwärmt ist,
dann kühlt es schneller ab.«
Aristoteles (384 – 322 v. Chr.)

PDF: Das Rätsel von Mpemba

Mit einem Purzelbaum auf die Welt kommen

Popcorn

In: Schlichting, H. Joachim. Spektrum der Wissenschaft  5  (2015), S.46 – 47

Wenn sich Maiskörner bei hohen Temperaturen auf einen Schlag in Popcorn verwandeln, kann nur noch eine High-Speed-Kamera das Geschehen erfassen.

»Hier finden die Metamorphosen,
die dem Ovid so am Herzen lagen,
ein weiteres Betätigungsfeld.«
Michel Onfray (geb. 1959)

PDF: Mit einem Purzelbaum auf die Welt kommen

Gradierwerke – alte Technik im Dienste der Gesundheit

Gradierwerk Bad EssenGradierwerke waren ursprünglich Anlagen, um aus salzhaltigem Wasser (Sole) Salz zu gewinnen. Weiterlesen

Thermische Muster an Wänden

Schlichting, H. Joachim. In: Physik in unserer Zeit 35/6, 289 (2004)

Die Natur bringt manchmal erstaunliche Muster hervor, hinter denen sich interessante physikalische Vorgänge verbergen. Im vorliegenden Fall geht es um thermische Muster. Sie entstehen durch thermische Bedingungen an Begrenzungen von Wänden.

PDF: Thermische Muster an Wänden

Der trinkende Storch – eine Verdunstungskraftmaschine

Schlichting, H. Joachim. In: Praxis der Naturwissenschaften – Physik 41/2, 22 (1992).

Vor uns steht ein zauberhafter schwarzer Vogel mit langem Hals und rotem Kopf der Spezies technischer Spielzeuge [1 – 8]. Bevor wir uns daranmachen, ihm physikalisch zu Leibe zu rücken und sein Verhalten dadurch zu „entzaubern“, wollen wir ihn einige Zeit in Aktion erleben…

PDF: Der trinkende Storch – eine Verdunstungskraftmaschine

Photoarchiv