//
Artikel Archiv

Verdunstung

Diese Schlagwort ist 25 Beiträgen zugeordnet

Schwitzende Schmeißfliegen

Schmeißfliegen werden manchmal mit einen Tropfen angetroffen, der ihnen aus dem Mund heraushängt. Darin zeigt sich eine besondere Art des Schwitzens. Dabei wird zwar dasselbe physikalische Prinzip ausgenutzt, wie beim Schwitzen des Menschen, allerdings unterscheidet sich der Mechanismus der Körperkühlung. Während bestimmte Teile der Körperoberfläche des Menschen unwillkürlich mit winzigen Schweißtröpfchen überzogen werden, lassen die Fliegen einen im Vergleich zu ihrem Körper sehr großen Speicheltropfen aus dem Mund hängen. Dieser verdunstet ähnlich wie der Schweiß auf der menschlichen Haut. Die für die Verdunstung nötige Energie wird der Umgebung und das heißt vor allem dem Tropfen selbst entzogen. Der auf diese Weise abgekühlte etwas verkleinerte Tropfen wird anschließend erneut aufgenommen. Indem anschließend in der Fliege ein Temperaturausgleich zwischen dem vorderen Teil des Fliegenkörpers und dem Tropfen stattfindet, kühlt sich die Fliege ab, während sich der Tropfen wieder auf die Körpertemperatur der Fliege erwärmt.
Diese Methode funktioniert allerdings nur, wenn die Luftfeuchte genügend gering ist. Denn nur dann kann entsprechend viel Wasser verdunstet werden.
Entscheidend für das Schwitzen ganz allgemein ist die Besonderheit von Wasser eine große spezifische Verdampfungswärme zu besitzen. Das heißt, anders als bei vielen anderen Stoffen ist verhältnismäßig viel Energie nötig, um eine gegebene Wasserportion zu verdampfen.
Ein Schweißmechanismus wie beim Menschen ist bei den Insekten nicht möglich, weil das Chitinaußenskelett der Tierchen, die Wärme schlecht leitet.

Quelle

Werbung

Trockenrisse und Landgewinnung

Obwohl Trockenrisse heute mehr als Symbol für ausgetrocknete Gewässer und durch Trockenheit verlorenes Ackerland wahrgenommen werden, ist ihnen aufgrund von naturschönen Mustern oft ein ästhetischer Reiz nicht abzusprechen. Im vorliegenden Fall handelt es sich sogar um ein Beispiel, bei dem Land gewonnen wird. Das Foto ist am Wattenmeer in Ostfriesland aufgenommen worden. Es zeigt nicht nur, dass schlammartiger Boden ausgetrocket wird, sich daher zusammenzieht und in einzelne Erdschollen zerreißt. Darüberhinaus erkennt man, dass sich die Schollen nach oben krümmen, weil sie dort schneller austrocknen als unten und dadurch auf der Oberseite stärker schrumpfen als an der weniger trockenen Unterseite.
Im vorliegenden Fall rollen sich sogar mehrere dünne Schichten auf. Sie verweisen auf eine Periodizität während ihrer Entstehung, bei der in mehreren Überschwemmungen Sedimente abgelagert wurden.
Weitere Beiträge zu Trockenrissen findet man hier und hier und hier und hier und hier.

Wie man Seifenblasen am Platzen hindert

Vorboten des Platzens: Die runden, dunklen Bereiche gehen teilweise von Keimen aus und werden immer größer. Sie kennzeichnen Stellen, die dünner sind als die Wellenlängen des sichtbaren Lichts.

Die Dauer – eine noch einzuführende Wissenschaft

Paul Valéry (1871 – 1945)

Die schillernden Kugeln üben eine große Faszination aus: wegen ihrer Farbspiele, aber auch ihrer meist sehr kurzen Lebensdauer. Doch diese lässt sich mit ein paar Tricks auf über ein Jahr verlängern!

Wenn man sagt, Träume zerplatzen wie Seifenblasen, wird die Vergänglichkeit dieser fragilen Objekte sprichwörtlich. Bei den menschlichen Bemühungen, Träume wahr werden zu lassen und Seifenblasen ein längeres Leben einzuhauchen, gibt es zumindest beim letzteren Punkt bemerkenswerte Fortschritte.

Physikalisch gesehen ist eine Seifenblase ein kugelförmiger Flüssigkeitsfilm, der mit einem Gas gefüllt ist, normalerweise Luft. Wie man an den prachtvollen Interferenzfarben direkt erkennen kann, ist die Wand einer solchen Blase äußerst dünn. Denn das bunte Schillern bedeutet, dass bei den Lichtwellen, die an der Außen- und Innenseite des Films reflektiert werden und sich dann überlagern, einzelne Farben ausgelöscht und andere verstärkt werden. Das ist aber nur bei einer Wanddicke möglich, die in der Größenordnung der Wellenlängen des sichtbaren Lichts liegt, also unterhalb eines tausendstel Millimeters.

Auf die filigrane Seifenhaut wirkt gleich nach ihrer Entstehung die Schwerkraft ein. Infolgedessen rinnt Flüssigkeit auf Grund ihres eigenen Gewichts langsam die Wand hinunter. Dadurch wird diese im oberen Bereich immer dünner. Zuweilen zeigt sich die Umverteilung an einem wachsenden Tropfen am unteren Ende.

Die Beobachtung, dass die Erdanziehung die Lebensdauer der Blasen maßgeblich verkürzt, wird durch Experimente in der internationalen Raumstation ISS untermauert. In der dortigen Schwerelosigkeit existieren die Gebilde länger als bei ansonsten vergleichbaren Bedingungen auf der Erde.

Interferenzringe: Bei einer Seifenblase auf einem feuchten Blatt weisen kreisförmige Farbverläufe darauf hin, wie sich die Seifenhaut nach oben hin durch die Schwerkraft zunehmend verdünnt hat.

Zusätzlich zur Gravitation setzen den Seifenblasen weitere Vorgänge zu. So verdunstet mehr oder weniger Flüssigkeit aus der Wand, je nach den herrschenden meteorologischen Bedingungen. Bei hoher Luftfeuchte halten sich die Blasen länger als bei strahlendem Sonnenschein. Die lebensverlängernde Wirkung lässt sich bei Nieselwetter besonders gut beobachten. Nicht nur nimmt die Verdunstungsrate ab – vermutlich werden sogar die Wasserdampfverluste durch auftreffende winzige Wassertröpfchen teilweise kompensiert.

Die Blase ist außerdem äußeren Störungen unterworfen, beispielsweise durch Luftbewegungen. Diese lassen die Wandstärke schwanken und provozieren Ausgleichsströmungen, die in schillernden Schlieren ihren sichtbaren Ausdruck finden. Wenn das die Blase nicht schon vorher hat platzen lassen, beobachtet man gegen Ende ihrer Lebenszeit, wie von oben beginnend die Farben sukzessive verschwinden. Dann ist die Filmdicke geringer als die Wellenlängen des sichtbaren Lichts, und unterhalb von einigen zehn Nanometern steht das Ende der Blase unmittelbar bevor.

Die unmittelbarste Bedrohung der schwebenden Sphären ist eine äußere Berührung, sei es von Staub oder durch die Hand eines spielenden Kindes. Solche Kontakte fungieren als so genannte Nukleationskeime, die oft rasend schnell zu einem Loch in der Blase und somit zum Platzen führen. Manchmal genügen bereits Inhomogenitäten der Seifenkonzentration als Auslöser. Berührungen erfolgen in vielen Fällen mit benetzbaren (hydrophilen) Gegenständen. Sie entziehen der dünnen Wand punktuell sehr viel Flüssigkeit, die nicht schnell genug durch Ausgleichsströmungen ersetzt werden kann. Das muss nicht immer so sein: Auf regennassen Blättern bleiben Seifenblasen liegen, ohne zu zerspringen.

Unterschiedliche Maßnahmen können das Leben der Gebilde verlängern. Straßenkünstler haben sich Rezepte für Seifenblasen erarbeitet, die zumindest einige Minuten überstehen. Solche Erfolge haben Aymeric Roux, Alexis Duchesne und Michael Baudoin von der Université Lille im Jahr 2022 allerdings weit in den Schatten gestellt: Den drei französischen Physikern gelang es, Blasen mit einer Lebensdauer von bis zu 465 Tagen herzustellen.

Farbverläufe: Infolge lokal variierender Verdunstungsraten entstehen Ausgleichsströmungen auf der Blase. Das sorgt für unterschiedliche Wandstärken, die als bunte Schlieren zum Ausdruck kommen

Dabei haben die Forscher die destruktiven Prozesse in der Seifenblase systematisch beseitigt. Sie unterbanden ein Herunterrinnen der Flüssigkeit in der Wand, indem sie der Lauge winzige Plastikteilchen mit einem Durchmesser von etwa einem zehntel Millimeter zufügten. Die hydrophilen Partikel umgeben sich mit der Flüssigkeit und werden von dieser mit in die Kugelform gezwungen. Der Effekt ähnelt dem Verhalten von trockenen Sandkörnern, die durch Zugabe von Wasser zu dauerhaften Sandburgen gestaltet werden können: Dort hält die Feuchtigkeit die Körner in Form, und der Sand hindert durch seine Hydrophilie das Wasser am Abfließen. Bei der Blase verfestigen die Kügelchen zudem das Gebilde und machen es unempfindlich gegen Berührungen und andere Quellen von Nukleationskeimen.

Wie man aber von einer Sandburg weiß, verhindert die Bindung des Wassers an den Körnern nicht dessen Verdunstung. Jedes Strandkunstwerk zerfällt irgendwann, wenn man den Sand nicht ständig befeuchtet.

Um dem Wasserverlust in den Blasen vorzubeugen, haben die Forscher ihrer Mixtur Glyzerin zugegeben. Dabei handelt es sich um eine hygroskopische Substanz, das heißt, sie kann Wasserdampfmoleküle aus der Umgebung aufnehmen und damit der Verdunstung entgegenwirken. Das funktioniert umso effektiver, je größer die Dampfkonzentration in der umgebenden Luft ist. Durch eine passende Dosierung sorgte das Team für Ausgewogenheit zwischen dem Wasserverlust durch Verdunstung und der Absorption durch das Glyzerin in der Wand. Damit konnte die Blase nicht mehr austrocknen.

Die verschiedenen Komponenten und Vorgänge in den dergestalt präparierten Blasen waren so gut ausbalanciert, dass ein Exemplar 465 Tage durchhielt. Der Rekord steht allerdings in einem ernüchternden Kontrast zu den Eigenschaften, die wir gemeinhin mit einer Seifenblase verbinden – sie alle fehlten hier. Weder schwebte die Sphäre, noch spiegelte sie oder schillerte farbenprächtig, sondern sie lag auf dem Untergrund wie die weißliche Kuppel einer Radarstation. Am Schluss platzte sie nicht spektakulär, sondern fiel kraftlos in sich zusammen. Dazu, woran sie schließlich doch noch zu Grunde gegangen ist, können die drei Wissenschaftler nur Vermutungen anstellen. Sie verdächtigen Kolonien von Mikroorganismen, die sich im Flüssigkeitsfilm entwickelten und das sorgfältig austarierte Gleichgewicht schließlich zerstörten.

Quelle

Roux, A. et al.: Everlasting bubbles and liquid films resisting drainage, evaporation, and nuclei-induced bursting. Physical Review Fluids 7, 2022

Fallende Gewänder aus Stein

Textilien, die man in bestimmter Weise „fallen“ lässt, „werfen“ Falten, die einem bestimmten „Fallprinzip“ gehorchen und vermutlich daher oft als ästhetisch ansprechend empfunden werden. An solche Textilien – Kleider, Vorhänge – musste ich denken, als ich in einer südfranzösischen Tropfsteinhöhle diese in vielen Jahrhunderten entstandenen Strukturen bewunderte. Sie sind Tropfen für Tropfen zur allmählichen Entfaltung gebracht worden, indem jeder Tropfen seinen Weg fand, bis er verdunstete und die gelösten Mineralien zurückließ. Man geht davon aus, dass die Tropfsteine nur etwa um einen Millimeter in zehn Jahren wachsen. Entscheidend ist dabei vor allem die Menge des tropfenden Wassers.
Gelenkt wird ein solcher langwieriger Prozess nicht durch einen innewohnenden Plan, sondern durch Zufall und Notwendigkeit. Dabei spielt das natürliche Prinzip, unter den gegebenen Umständen stets soviel Energie wie möglich an die Umgebung abzugeben, eine entscheidende Rolle. Würde der Prozess unter den gleichen Randbedingungen noch einmal ablaufen, so ergäbe sich zwar ein ähnliches aber nicht das gleiche Muster.

Der Weinkühler leckt…

Mich faszinieren immer wieder einfache technische Lösungen praktischer Probleme. Dazu gehört auch der Weinkühler aus Ton. Man füllt ihn bis zu einer passenden Höhe mit Wasser und stellt die Wein-/Sektflasche hinein. Da der Ton porös ist, sodass das Wasser allmählich hindurchsickert wird die Außenwand feucht (siehe dunklen Bereich im Foto). Die Feuchtigkeit verdunstet. Da zur Verdunstung von Wasser Energie nötig ist, wird diese der Umgebung entzogen. Dafür kommt vor allem das Wasser infrage. Dieses kühlt sich daher ab und entzieht seinerseits im gleichen Maße der Weinflasche Energie mit dem gewünschten Effekt der Temperaturerniedrigung.
Der Antrieb des Vorgangs ist in der Tendenz des Wasserdampfes zu sehen, sich möglichst gleichmäßig über den zur Verfügung stehenden Raum zu verteilen. Voraussetzung für die Funktion dieses Kühlprozesses ist allerdings, dass die Luftfeuchte nicht zu hoch ist. Bei einer relativen Luftfeuchte von 100% würde genauso viel Wasserdampf kondensieren wie entsteht und das hilft in diesem Fall überhaupt nicht.
Übrigens nutzen asssimilierende Pflanzen dasselbe Prinzip, um Flüssigkeit von der Wurzel bis in die grünen Blätter zu transportieren. Daher ist es in grünen Wäldern auch so angenehm kühl: Der Umgebung wird Energie zur Verdunstung entzogen.

Natürliche Baumbemalung

Hier hat sich ein Baum seine Äste auf ästhetisch ansprechende Weise bemalen lassen. Das Foto zeigt den fast waagerecht ausladenden Ast von der Unterseite, an der auch die Totoos zu sehen sind. Nur dadurch, dass ich unter diesem Baum bei Regen Schutz suchte, bekam ich einige Hinweise auf die Entstehung dieser elegant geschwungenen Bögen. Das Regenwasser wurde durch diese vorgezeichneten Bahnen Zufall abgeleitet, um an den tiefsten Stellen herabzutropfen.
Auch wenn ich nicht bis zum Schluss der Trocknung wartete, denke ich, dass nach der Trocknung die im Wasser gelösten Stoffe (die Teilweise von der mit Algen besetzten Oberseite stammen) zurückbleiben und auf diese Weise die Bahnen sichtbar machen. Vermutlich hat es zahlreicher Regenschauer bedurft, um schließlich eine derart deutliche Zeichnung hervorzubringen.
Dieses Phänomen ist gleichzeitig wegen seiner Entstehungsgeschichte interessant und wegen der eindrücklichen Zeichnung naturschön.

Reflektierende Tropfen

Normalerweise kennt man Wassertropfen als etwas plattgedrückte Kugeln, wenn sie beispielsweise auf einer ebenen Fläche hausen. Die Schwerkraft und die Oberflächenkraft machen ihnen zu schaffen, ihrer wahren Haltung als Tropfen gerecht zu werden. Aber auch der umgekehrte Fall, wenn sie durch die Schwerkraft etwas in die Länge gezogen werden, ist nicht ideal, weil präkar (siehe Foto). Denn es fehlt nicht viel und die Oberflächenkraft reicht nicht mehr aus, ihr zunehmendes Gewicht (durch Anlagerung von Wasserdampfmolekülen) zu kompensieren. Der nasse Boden zeigt, was ihren vorausgegangenen Kollegen passiert ist und auch ihnen in Kürze bevorsteht. Aber solange sie können, reflektieren sie (über) ihre Umgebung und lassen uns daran teilhaben.

Polygonale Sandmuster

Dieses polygonale Muster sah ich in einem dicht am Meer gelegenen hinter einigen Dünen tief gelegenen Sandgebiet. Obwohl es während der Beobachtung (Fotografie) völlig trocken war, vermute ich, dass die Musterung darauf zurückzuführen ist, dass unterhalb des Sandbodens das Grundwasser in geringer Tiefe anzutreffen ist. Und dieses Grundwasser dürfte wegen der Nähe des Meeres salzhaltig sein (Brackwasser). Durch die Verdunstung eines Teil des in Kapillaren zwischen den Sandkörnern aufsteigenden Salzwassers an der Oberfläche des Sandes bleibt gelöstes Salz zurück. Es führt allmählich zu einer Anreicherung des Salzes an der Oberfläche und damit zu einer helleren Färbung. Da ein Teil des Wasser an den Rändern solcher Polygone durch absinkendes Wasser innerhalb der Polygone teilweise kompensiert wird, entsteht ein solches an eine Bénardkonvektion erinnerndes Muster.

Dies ist eine grobe vorläufige Vermutung und muss weiter untersucht werden.

Optische Täuschung auf der Straße

Als ich einen Spaziergang auf einer ziemlich ramponierten Asphaltstraße unternahm, den Blick in die Ferne schweifen ließ und auf die Straße nur deshalb achtete, um nicht zu stolpern, geriet ich plötzlich ins Stolpern. Es lag zwar kein Grund vor, denn die Straße war an der Stelle nicht schlechter als anderswo, aber sie trug eine „Zeichnung“ die tief in unsere abendländische Wahrnehmung integriert ist. Die wie auch immer durch den Einfluss von Witterung und Benutzung entstandenen Riefen verliefen gerade so, wie man es gelernt hat eine Kuhle auf einem Blatt Papier eine Kuhle zu zeichnen: lauter zum Zentrum hin (dort wo es am tiefsten sein sollte) schwungvoll gezogene Linien.
Es ärgerte mich schon ein wenig, dass ich mich in der vertrauten räumlichen Welt (unbewusst) von Riefen auf einer weitgehend ebenen Fläche dermaßen täuschen ließ. So wäre es beinahe dazu gekommen, dass mich nicht ein reales, sondern ein eingebildetes Hindernis zu Fall gebracht hätte. In welcher Welt lebe ich eigentlich?
Noch ein Wort zur dunklen Färbung des Asphalts. Auch dabei handelt es sich nicht um einen echten Unterschied zur hellen Färbung. Das Wasser eines kurz vorher niedergegangenen Regens hat sich in den Riefen länger gehalten als im übrigen Bereich. Denn die Verdunstungsrate ist überall gleich. Nasse Stellen pflegen dunkler und farbintensiver zu sein als helle, das hatten wir früher schon einmal diskutiert.

Kinetische Farben auf einer Seifenblase

Wenn man das obige Foto sieht, denkt man wohl eher an ein abstraktes Kunstwerk als an einen natürlichen Vorgang. Es handelt sich dabei um einen kontrastverstärkten Ausschnitt aus einem turbulenten Geschehen auf einer Seifenblase, die hier gemeinsam mit einer Schwesterblase etwas genauer in den Blick genommen wird (unteres Foto, rechte Blase). Die Doppelblase ist auf einem Weinblatt hängen geblieben und zeigt auf ihrer Oberfläche das, was im oberen Foto ausschnittsweise wiedergegeben wird. Angefacht durch Luftbewegungen und Degenerationsprozesse in der Seifenhaut ist allerlei los auf den Blasen.

Eine Wolke wie ein Pfeil

Aufwärts

An diesem windstillen Tag sieht man schon von weitem eine steil bis in die Wolken reichende vermeintliche Rauchfahne. Aus einem günstigen Blickwinkel (Foto) erkennt man, dass es kein Rauch, sondern Wasserdampf ist, der senkrecht über dem Kühlturm eines Kohlekraftwerks steht. Man kann auch sagen, es ist eine Wolke. Eine besondere Wolke, denn sie ignoriert die diffuse natürliche Bewölkung, die an diesem Tag natürlicherweise vorhanden ist. Ja, sie durchdringt sogar eine kaum als Wolke zu erkennende Schicht wie ein Pfeil, dessen Spitze darüber wieder zum Vorschein kommt.
Diese Konstellation gibt zum einen Hinweise auf die Höhe der Wolken und zum anderen zeigt sie wie schwierig es ist, am bewölkten Himmel die Anordnungen und Entfernungen zwischen den verschiedenen Wolkenschichten einigermaßen plausibel einschätzen zu können.
Der enorme Auftrieb, der sich in dieser Nebelfahne über dem Kühlturm zeigt, weist auf einen deutlichen Temperaturunterschied zwischen der Umgebung und dem aufsteigenden und sofort kondensierenden Wasserdampf und damit indirekt auch auf die zur Kühlung eines konventionellen Kraftwerks nötigen Energieverluste hin.

Die Sonne spinnt…

…jedenfalls mischt sie sich ins Spinnennetz ein und scheint die zentralen Stellen des Netzes wegzubrennen. Das ist natürlich eine Täuschung, die auf eine physiologische Überforderung bei der menschlichen Wahrnehmung (Irradiation) und eine technische Überforderung bei der Kamera (Blooming) zurückzuführen ist. Interessanterweise führt das zu parallelen Wirkungen mit der Folge, dass das Foto in etwa dasselbe zeigt, was auch das Auge sieht.
Die Sonne nützt sogar der Spinne, indem sie dazu beiträgt, das Netz von den nächtlichen Tautropfen zu befreien. Dadurch wird das Netz wieder weitgehend unsichtbar (wie man bereits jetzt an einigen scheinbar fehlenden Teilstücken erkennen kann) – eine Voraussetzung dafür, dass die Insekten nicht sofort ein materielles Hindernis erkennen und der Spinne ins Netz gehen.
Auf diesem Foto beeindruckt aber besonders, dass die Spinne auch ohne etwas von physikalischen Zusammenhängen zu verstehen die Elastizität der Schilfblüte für ihre Zwecke ausnutzt. Indem sie ihre Fäden zwischen der gebeugten Blüte und dem übrigen Halm spannt, wird das Netz umgekehrt durch die rückwirkenden Kräfte des über die schwerkraftsbedingte Neigung hinaus gebogenen Halms straff gehalten. Das erspart ihr aufwändige Spannvorrichtungen, wie sie ansonsten oft benötigt werden. Ähnlich clever handelte die Spinne, die ein aufgewölbtes Blatt zum Spannen nutzte.

Rätselfoto des Monats Mai 2021

Wie kommt es zu den spektralen Farbsystemen?

.


Erklärung des Rätselfotos des Monats April 2021

Frage: Wie kommt es zu den Feuchtigkeitsstrukturen?

Antwort: Es ist neblig, feucht und kalt (wenige Grad über Null). Aber die noch sehr tief stehende, den leichten Nebel durchdringende Sonne verheißt einen sonnigen Tag. Der aluminiumverkleidete Universitätsbau ist mit Feuchtigkeit „beschlagen“. Die Feuchtigkeit rührt von den Wassertröpfchen des leichten Nebels her, die durch den Wind gegen die Gebäudewand strömen und hier haften bleiben. Das Phänomen ist in manchen warmen und unter Trockenheit leidenden Ländern vertraut. Der Morgennebel wird von einer Brise beispielsweise gegen die Olivenbäume getrieben, an deren Stämmen Wassertröpfchen hängen bleiben und anschließend herunter laufen. So kommt es auch ohne Regen zu einer mäßigen aber regelmäßigen Bewässerung.
Es bleibt die Frage, warum die Wand nicht gleichmäßig benetzt wird, sondern ovale feuchte Gebiete innerhalb der rechteckigen, von durchgehenden Metallsprossen begrenzten Felder entstehen. Die trockenen Ränder sind Ausdruck der Tatsache, dass der Wärmeübergang von innen nach außen ungleichmäßig erfolgt. Die Felder sind innen mit Isoliermaterial ausgefüllt. Nicht aber die Begrenzungssprossen. Sie stellen offenbar relativ gut leitende Wärmebrücken dar. Der dadurch bedingte größere Energiestrom führt zu einer schnelleren Verdunstung des dünnen Wasserfilms als in den wärmeisolierten Feldern. Da sich die von den Sprossen abgeleitete Wärme auch noch etwas seitlich ausbreitet, in den Ecken sogar von zwei senkrecht miteinander verbundenen Sprossen, ergeben sich zwangsläufig Abrundungen, die zu den ovalen Bereiche führen, in denen die Isolierung gut und die Verdunstung des Wassers nicht so stark ist.

Weinender Wein

H. Joachim Schlichting. Spektrum der Wissenschaft 4 (2021), S. 68 – 69

Wie oft ein Glas Wein ein System erzeugt

Georg Christoph Lichtenberg (1742–1799)

Schwenkt man ein alkoholisches Getränk im Glas, rinnen an dessen Innenwand Tropfen herab. Sie entstehen, weil verdunstender Alkohol einen dünnen Film aus der Flüssigkeit in Form einer instabilen Stoßfront hochsaugt.

Weintrinker schwenken ihr Glas, um die Aromen besser zur Geltung zu bringen. Dabei bilden sich an der Innenseite Tropfen, die in das Getränk zurückfließen. Das Phänomen ist vielen Genießern vertraut und erlaubt gewisse Rückschlüsse auf die Konzentrationen der enthaltenen Stoffe – beispielsweise ist es besonders bei hochprozentigen Vertretern gut zu beobachten. Da die entstehenden Figuren ein wenig an Kirchenfenster erinnern, werden sie zuweilen auch so genannt.
Dass Wein auf diese Weise gewissermaßen Tränen vergießt, ist seit langem bekannt. Der englische Physiker Charles Vernon Boys (1855–1944) ging in seinem früher sehr populären Buch über Seifenblasen sogar davon aus, die Erscheinung würde bereits »in den Sprüchen Salomons Kapitel 23, Vers 31 erwähnt: Siehe den Wein nicht an, wenn er rot ist, wenn er seine Farbe dem Glase gibt, und wenn er von selbst aufwärts steigt.« (In der deutschen Bibelübersetzung Luthers lautet die Stelle etwas anders.)
Die erste physikalische Erklärung lieferte James Thomson (1822–1892) Mitte des 19. Jahrhunderts, doch die Details des Alltagsphänomens beschäftigen die Wissenschaft bis heute. Im März 2020 hat eine Forschergruppe um die Mathematikerin Andrea Bertozzi von der University of California in Los Angeles eine Arbeit dazu publiziert. Die Untersuchung bezieht die Geometrie des Glases ein und soll eine vollständige quantitative Beschreibung der Tränen liefern. Das Phänomen wirkt auf den ersten Blick einfacher, als es tatsächlich ist. Zum Verständnis ist es nötig, das Wechselspiel vielfältiger physikalische Aspekte zu entwirren.
Zunächst kommt die Tendenz gewisser Flüssigkeiten ins Spiel, Flächen zu benetzen. Schaut man sich ein Glas mit Wasser darin etwas genauer an, erkennt man, wie letzteres ein Stück weit an der Wand aufsteigt und einen typischen konkaven Meniskus hervorbringt. Das passiert, weil zur Ausbildung einer Grenzfläche zwischen zwei Substanzen Grenzflächenenergie nötig ist. Die Natur tendiert dazu, diese möglichst gering zu halten, und bei Wasser und Glas ist weniger Energie erforderlich als im Fall von Luft und Wasser.
Der Weg nach oben endet allerdings bald: Der Energiegewinn infolge des Anhaftens wird durch die potenzielle Energie, die das Medium nach unten zieht, mit zunehmender Höhe aufgewogen. Der Vorgang heißt auch Kapillareffekt. Wenn man nämlich das Glas auf ein Röhrchen mit winzigem Durchmesser verengt, reduziert das die anzuhebende Masse der Flüssigkeitssäule enorm, und das Wasser kann weiter steigen. In Bäumen spielt das eine wesentliche Rolle beim Transport von der Wurzel bis in die Blätter (siehe »Spektrum« Juli 2015, S. 50).
Wein und andere alkoholische Getränke bestehen vor allem aus Wasser und Alkohol sowie einigen für den Geschmack entscheidenden Stoffen. Beide Flüssigkeiten gehen zwar eine homogene Mischung ein, verhalten sich aber in physikalischer Hinsicht unterschiedlich. Alkohol verdunstet wesentlich bereitwilliger, hat also eher die Tendenz, in den gasförmigen Zustand überzugehen. Das ist unter anderem auf die größere Grenzflächenspannung des Wassers zurückzuführen, die der Verdunstung entgegenwirkt. Der Alkohol verfliegt daher früher – das wird bei der Destillation zum Abtrennen des »Weingeistes« ausgenutzt. Der Prozess läuft in der dünnen Schicht an der Glaswand besonders stürmisch ab. Dort ist die Grenzfläche zwischen Luft und Wein im Verhältnis zum Volumen sehr groß, und der Anteil des Wassers nimmt rasch zu. Dessen Anreicherung wiederum steigert die Grenzflächenspannung im Flüssigkeitsfilm.
Zur Verdunstung ist Energie nötig, die der Umgebung entzogen wird, also vor allem dem Wein selbst. Damit ist eine verhältnismäßig starke Abkühlung verbunden. Einen lebhaften Eindruck von der Verdunstungskälte kann man sich verschaffen, indem man einen Tropfen Alkohol auf dem Handrücken verteilt und die Hand schwenkt oder anbläst (siehe »Spektrum« Januar 2012, S. 52). Die Grenzflächenspannung nimmt mit sinkender Temperatur zu, was zusätzlich zum Spannungsunterschied zwischen dem dünnen Film und dem übrigen Wein beiträgt.
Das führt zu Ausgleichsströmungen: In dem Maß, in dem vor allem der Alkohol verdunstet, wird Wein aus dem Glas nachgezogen. Der Effekt ist nach dem italienischen Physiker Carlo Marangoni (1840–1925) benannt, der ihn schon im 19. Jahrhundert eingehend studiert hat. Jedoch war bislang noch nicht geklärt, wie der Prozess im Einzelnen abläuft. Denn stiege die Flüssigkeit in einem Film von einheitlicher Dicke auf, wäre nicht einzusehen, wieso sie nicht einfach ähnlich gleichmäßig wieder zurückfließen sollte – statt es in Form von Tränen zu tun.
Bertozzi und ihre Kollegen haben nun mit einem mathematischen Modell und Experimenten eine Lösung des Problems gefunden. Sie gehen unter anderem davon aus, dass die Grenzflächenspannung mit der Höhe des Films gleichmäßig zunimmt. Dann bewegt sich die Flüssigkeit in einer ringförmigen Welle nach oben. Dabei handelt es sich – in wissenschaftlicher Terminologie – um eine »umgekehrte unterkompressive Stoßwelle«. Trotz der äußeren Ähnlichkeit mit einer normalen Stoßwelle lässt hier das anhaltende Ziehen infolge der Marangoni-Strömung das Gebilde instabil werden.
Innerhalb der Schicht rücken einzelne Fronten nach, die von der Grenze zum Weinmeniskus ausgehen. Sie laufen gegen die bereits an der Glaswand befindliche, mit Wasser angereichte Flüssigkeit an. Dann lassen kleinste Inhomogenitäten entlang der Welle diese an solchen Stellen zerreißen. Um die Grenzflächenenergie zu minimieren, ziehen sich die Bruchstücke sofort zu separaten Tropfen zusammen, die wie Tränen am Rand herabfließen. Das Szenario wiederholt sich, solange ausreichend Alkohol im Wein ist. Angetrieben werden diese Vorgänge letztlich durch die Tendenz von Flüssigkeiten, sich durch Verdunstung gleichmäßig im zur Verfügung stehenden Raum zu verteilen. Sofern wir sie nicht daran hindern, indem wir sie vorher konsumieren.

Quelle

Dukler, Y. et al.: Theory for undercompressive shocks in tears of wine, Physical Review Fluids 5, 2020

Originalversion: Weinender Wein

Das Wassertröpflein

Tröpflein muss zur Erde fallen,
Muss das zarte Blümchen netzen,
Muss mit Quellen niederwallen,
Muss das Fischlein auch ergötzen,
Muss im Bach die Mühle schlagen,
muss im Strom die Schiffe tragen,
und wo wären denn die Meere,
wenn nicht erst das Tröpflein wäre* Weiterlesen

Durchsichtiges Holz

Als ich am frühen Morgen an einem Bauernhof vorbeiging staunte ich nicht schlecht, als das massive Holztor durchsichtig zu sein schien. Jedenfalls zeichneten sich die auf der Innenseite angebrachten Verstrebungen der Tür durch einen dunkleren Farbton deutlich ab, so als ob die von der anderen Seite in den Stall hineinleuchtende Sonne (siehe Lichtstreifen unter dem Tor hindurch) es nur nicht schaffte, die dicken Verstrebungen des Tors zu durchleuchten und aufzuhellen.
Da das Holz des Tors sehr massiv ist, kommt diese naheliegende Erklärung nicht infrage. Dennoch ist die Sonne Verursacherin des Phänomens. Die Außenseite des Tors ist noch nass von einem kürzlich vorausgegangenen Regenschauer. Die noch tief stehende Sonne, die durch das geöffnete gegenüberliegende Tor hindurch scheint, erwärmt die  Innenseite des auf der Außenseite regennassen Tors. Die dadurch bedingt Aufheizung des Tors führt dazu, dass die Wärme als erstes an den dünnen Stellen die Außenseite erreicht und dort die Verdunstung der Regentropfen  beschleunigt.  Dass wir dies überhaupt beobachten können, ist der Tatsache zu verdanken, dass nasses Holz wesentlich dunkler aussieht als trockenes Holz.

Trockenrisse bei Anselm Kiefer

Am 8. März feierte Anselm Kiefer seinen 75. Geburtstag. Das nehme ich zum Anlass an einen künstlerischen Aspekt seines Werkes zu erinnern, in dem er die reale Strukturbildung, wie sie beispielsweise bei der Bildung von Trockenrissen wirksam ist, in einige seiner großformatigen Bilder integriert. Ich hatte vor einigen Jahren Gelegenheit diese oft überdimensional großen Bildskulpturen im Grand Palais in Paris zu kennen und schätzen zu lernen.
Kiefer hat offenbar die natürlichen Vorgänge selbst in seine künstlerischen Aktivitäten integriert und damit diesen oft übersehenen und missachteten Alltagsphänomenen besondere Wertschätzung und ästhetischen Rang verliehen. Ich will hier nur das Beispiel „Palmsöndagen“ (Palmsonntag) nennen, auf das ich hier aus Urheberechtsgründen nur durch einen Link verweisen kann.
Stattdessen sieht man auf dem hier gezeigten Foto Trockenrisse im Watt des Hamswehrumer Tiefs (Ostfriesland), die eine ganz ähnliche Struktur wie in einem Detail von Palmsöndagen aufweisen.
Obwohl Trockenrisse etwa in Bildern von ausgedörrtem Ackerland in Afrika, negativ besetzt sind, gibt es andere Kontexte, in denen sie ihr ästhetisches Potenzial voll entfalten. Ich denke da nicht einmal an die polygonalen Risse in alten Gemälden, die gewissermaßen einen Teil der Patina derselben ausmachen und selbst bei Restaurierungen beibehalten werden, sondern vor allem an die immer wieder neu entstehenden Rissstrukturen  in austrocknenden Pfützen und anderen Feuchtgebieten.
Wenn schlammhaltiger Boden austrocknet verdunstet das Wasser. Dieser Substanzverlust macht sich darin bemerkbar, dass in der Oberfläche eine Zugspannung entsteht. Diese wird schließlich so groß, dass die Oberfläche reißt. Dabei geht sie wie nach den Naturgesetzen nicht anders möglich in ein polygonales Netz aus Rissen über.
Wer sich mehr Details zur Entstehung solcher Rissstrukturen wünscht, schaue hier oder hier oder hier.

 

Wäsche im Wind

solare_waescjetrocknung_rvTollt der Wind über Feld und Wiese,
Hat seinen Spaß er überall,
Aber am liebsten neckt er die Liese
Mit einem tückischen Überfall.

Will sie ihr Zeug auf die Leine bringen,
Zerrt er: Liese, dies Hemd ist mein!
Um jedes Laken muss Liese ringen,
Jedes Stück will erobert sein. Weiterlesen

Saline von Fuencaliente auf La Palma oder: Wie kommt das Salz aus dem Meer?

Farbenprächtige-SalinenEingebettet zwischen dem Blau des Meeres und dem dunklen Vulkangestein wird die Saline von Fuencaliente an der Südspitze der Kanareninsel La Palma mit ihren sanften Gelb- bis Rottönen und den weißen Schütthaufen geernteten Salzes zu einem faszinierenden Anblick. Insbesondere nach einer Tageswanderung durch die Vulkanlandschaft findet man hier eine so wohl nicht erwartete Entlastung der dunklen durch die hellen Töne. Die Saline von Fuencaliente ist die einzige noch in Betrieb befindliche Meersalzgewinnungsanlage der kanarischen Provinz Tenerife. Weiterlesen

Rätselfoto des Monats November 2016

130_tropfen_rvFrage: Wie kommt es zu dieser künstlerisch anmutenden Struktur?

__________________________________________________________________

Erklärung des Rätselfotos des Monats Oktober 2016

Frage eines Kindes: Warum hebt er nicht ab?

Antwort: Keine dumme Frage, denn das Kind weiß, dass wenn es seinen Ballon loslässt, dieser sich unwiederbringlich in die Luft erhebt. Aber eine kleine, sehr grobe Überschlagsrechnung zeigt, dass die Befürchtung des Kindes völlig unberechtigt ist.
Man kann leicht abschätzen, ob die Bedenken des Kindes berechtigt sind. Ein Latexballon mit 30 cm Durchmesser hat ein Volumen von etwa 14 Liter. Ein Liter Luft wiegt 1,2 g. Ersetzt man die Luft durch Helium, das 0,18 g pro Liter wiegt, so ist der Ballon pro Liter ungefähr 1 g, also insgesamt 14 g leichter. Da die Latexhülle etwa 4 g wiegt, so ergibt sich eine Tragkraft von 10 g. Wenn man also 1/10 einer Tafel Schokolade (100 g) dranhängt, würde der Ballon in etwa schwerelos sein. Um genügend schnell aufsteigen zu können, darf man nur einige Gramm (vielleicht 3 Gramm) weniger dranhängen. Es bliebe eine Tragkraft von 7 g. Ein Mensch mit einer Masse von 70 kg würde erst aufsteigen, wenn er an einer Traube von 10000 Ballons hinge.
Das ist viel, wie man sich an der Größe der Traube klarmachen kann, die sich ergäbe, wenn man die kugelförmigen Latexballons kugelförmig zusammenbände, was natürlich nur näherungsweise gelänge, hier aber angenommen wird, um eine einfache Abschätzung machen zu können.
Das Volumen der großen Kugel wäre 10000 mal so groß wie das eines einzelnen Ballons, wenn man davon ausginge, dass die Kugeln ohne Zwischenraum aneinander lägen. Aber das ist nicht realisierbar. Man schafft es höchstens, die Kugeln bei kleinstmöglichen Zwischenräumen aneinanderzupacken. Das wäre – wenn ich mich nicht verrechnet habe – bei einer „unendlichen“ Kugelpackung des Raumes mit einem Füllgrad von 74% möglich. So käme man auf einen Kugeldurchmesser von 7,14 m; in Wirklichkeit wäre es also noch mehr.
Bei Folienballons – mit solchen haben wir es auf dem Foto zu tun – ist die Situation noch ungünstiger. Da der Ballon bei etwa gleichem Volumen ca. 10 g wiegt, würde der Rest kaum noch für eine Nutzlast reichen. Daher reicht ein relativ kleine Masse, um die Ballontraube am Abheben zu hindern. Man gibt meist noch etwas Masse hinzu, um auch gegen normale Windböen gewappnet zu sein.

 

 

Das Rätsel von Mpemba

MpembaSchlichting, H. Joachim. In: Spektrum der Wissenschaft  9  (2015), S.40 – 41

Sagt Ihnen Mpemba etwas? Hinter dem fremdartigen Namen steckt das ungewöhnliche Phänomen, dass heißes Wasser unter sonst gleichen Bedingungen schneller gefriert als kaltes. Der »Mpemba-Effekt« scheint der physikalischen Intuition zu widersprechen. Und doch ist es so. Das Phänomen ist seit vielen Jahren Gegenstand der Forschung, ohne dass bislang eine allgemein akzeptierte Erklärung verfügbar wäre. Wir diskutieren hier eine Lösung des Problems, in der die größeren Strömungsbewegungen im anfangs heißen Wasser entscheidend dafür ist, dass es schneller gefriert als das kalte.

»Wenn das Wasser vorher erwärmt ist,
dann kühlt es schneller ab.«
Aristoteles (384 – 322 v. Chr.)

PDF: Das Rätsel von Mpemba

Mit einem Purzelbaum auf die Welt kommen

Popcorn

In: Schlichting, H. Joachim. Spektrum der Wissenschaft  5  (2015), S.46 – 47

Wenn sich Maiskörner bei hohen Temperaturen auf einen Schlag in Popcorn verwandeln, kann nur noch eine High-Speed-Kamera das Geschehen erfassen.

»Hier finden die Metamorphosen,
die dem Ovid so am Herzen lagen,
ein weiteres Betätigungsfeld.«
Michel Onfray (geb. 1959)

PDF: Mit einem Purzelbaum auf die Welt kommen

Gradierwerke – alte Technik im Dienste der Gesundheit

Gradierwerk Bad EssenGradierwerke waren ursprünglich Anlagen, um aus salzhaltigem Wasser (Sole) Salz zu gewinnen. Weiterlesen

Thermische Muster an Wänden

Schlichting, H. Joachim. In: Physik in unserer Zeit 35/6, 289 (2004)

Die Natur bringt manchmal erstaunliche Muster hervor, hinter denen sich interessante physikalische Vorgänge verbergen. Im vorliegenden Fall geht es um thermische Muster. Sie entstehen durch thermische Bedingungen an Begrenzungen von Wänden.

PDF: Thermische Muster an Wänden

Der trinkende Storch – eine Verdunstungskraftmaschine

Schlichting, H. Joachim. In: Praxis der Naturwissenschaften – Physik 41/2, 22 (1992).

Vor uns steht ein zauberhafter schwarzer Vogel mit langem Hals und rotem Kopf der Spezies technischer Spielzeuge [1 – 8]. Bevor wir uns daranmachen, ihm physikalisch zu Leibe zu rücken und sein Verhalten dadurch zu „entzaubern“, wollen wir ihn einige Zeit in Aktion erleben…

PDF: Der trinkende Storch – eine Verdunstungskraftmaschine

Photoarchiv