//
Artikel Archiv

Wasser

Diese Schlagwort ist 141 Beiträgen zugeordnet

Kooperation zwischen Kunst und Physik

Diese Sandstruktur ist am Strand enstanden, indem ich die Gezeiten zu Gestaltbildung ausgenutzt habe. Konkret habe ich im Gezeitenbereich aus dem schwarzweißen Sandgemisch eine Figur modelliert und sie dann der Flut überlassen. Stunden später kam dieses „Kunstwerk“ dabei heraus. Physikalische Vorgänge durch Zufall und Notwendigkeit waren hier in einer für mich nur im Prinzip durchschaubaren Weise am Werk.

Das singende Teesieb

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2021), S. 68 – 69

Daß vom reinlichen Metalle
Rein und voll die Stimme schalle

Friedrich Schiller (1759–1805)

Trifft ein Wasserstrahl auf die Lochstruktur eines Edelstahlsiebs, ist manchmal ein Pfeifton zu hören. Er entsteht, wenn Wasserwirbel periodisch auf das Blech zurückwirken und Resonanzschwingungen anregen.

Früher wurde die Teepause von einem Pfeifen eingeläutet, heute wird sie eher damit beendet. Jedenfalls hat der Kessel für die Herdplatte mit seinem schrillen Flöten inzwischen beinahe ausgedient, während Teesiebe aus Edelstahl immer größere Verbreitung finden. Sie sorgen für ein seltsames akustisches Phänomen: Zahlreiche Videos im Internet zeigen die Utensilien, wie sie beim Reinigen im Spülbecken Töne von sich geben.

Die Zufallsentdeckung ist nach kurzem Ausprobieren leicht reproduzierbar, und unter den passenden Umständen offenbaren verschiedene Fabrikate ihre Musikalität. Zum einen muss der Wasserstrahl das Metall mit einer gewissen Geschwindigkeit treffen. Diese nimmt mit der Fallhöhe zu. Bei manchen Sieben reicht der Abstand zwischen Wasserhahn und Spülbecken nicht aus, und das Kunststück gelingt nur im Badezimmer oder mit dem Gartenschlauch. Zum anderen tönt die gelochte Fläche nur dann, wenn sie unter einem bestimmten Winkel getroffen wird. Um den für das Pfeifen optimalen Bereich zu finden, empfiehlt es sich, das Sieb unter dem Wasserstrahl ein wenig zu heben und zu senken und dabei die Neigung zu variieren. Am besten funktioniert es, indem der Strahl den flachen Boden trifft (siehe »Reinigen unter Pfiffen«). Im Lauf einer Reihe von Experimenten konnten mein Kollege Wilfried Suhr und ich sogar ein Sieb an der Mantelseite zum Tönen bringen.

Lochblech aus der Nähe: Ein Wasserstrahl durchdringt das schräg gestellte Sieb teilweise und bildet auf der Rückseite einen Wasserwulst (Pfeil), in dem die Mechanismen zur Tonentstehung ablaufen.

Der relativ kräftige Ton lässt auf eine Schwingung schließen, zu der das auftreffende Wasser das Lochblech anregt. Berührt man das Metall in der Nähe des Strahls, dämpft das den Vorgang, und das Pfeifen verschwindet. An allen übrigen Stellen kann das Sieb hingegen angefasst werden, ohne damit den Ton zu beeinflussen.

Was dabei genau passiert, hat Wilfried Suhr in einer 2020 veröffentlichten Arbeit zusammengefasst. Der auf die Siebfläche prallende Strahl wirkt wie ein mechanischer Schwingungserreger, der zum Beispiel eine Lautsprechermembran vibrieren lässt. Doch das Wasser strömt gleichförmig aus dem Hahn. Woher kommt der Rhythmus, mit dem es das Blech auslenken und in Schwingung versetzen könnte? Es genügt dafür nicht, dass es mit einer ganz bestimmten Geschwindigkeit auf einen passenden Abschnitt des Lochblechs auftrifft. Darüber hinaus muss ihm durch eine geeignete Wechselwirkung eine Frequenz aufgeprägt werden.

Den Taktgeber entdeckt man bei einem genaueren Blick auf die Auftreffstelle. Längs des geneigten Blechs staut sich eine Strömung auf, die teilweise durch die Löcher hindurch auf die andere Seite gelangt (siehe »Lochblech aus der Nähe«). Wenn man die diversen Strömungsbereiche geschickt manipuliert und den Einfluss kleiner Störungen beobachtet, findet man heraus: Die Töne werden von einem länglichen Wasserwulst unterhalb des unmittelbaren Aufpralls hervorgebracht. Dort entsteht eine zeitlich periodische Wasserbewegung – für die wiederum die regelmäßige Lochstruktur notwendige Voraussetzung ist.

Synchronisation: Schematische Darstellung der Wirbelablösung an einer gelochten Wandung. Gekoppelte Wirbelpaare des gleichen Entstehungszyklus sind gleichfarbig markiert.

Die Blechstege zwischen den Löchern spalten nämlich den Wasserstrom auf und erfüllen dabei eine ähnliche Funktion wie gespannte Saiten in einem Luftstrom. Diese lösen jeweils eine Folge paarweise entgegengesetzter Wirbel aus, eine so genannte kármánsche Wirbelstraße. Sie stoßen sich gewissermaßen vom Draht ab, woraufhin er schwingt. Wenn dabei eine seiner Eigenfrequenzen angeregt wird, gerät er in Resonanz und ruft in der umgebenden Luft periodische Verdichtungen und Verdünnungen hervor. Sie werden als Ton wahrnehmbar. So entstehen beispielsweise die Klänge einer Äolsharfe (siehe »Spektrum« November 2020, S. 52).

Ein vergleichbares, nur wesentlich komplexeres Geschehen spielt sich beim Teesieb ab. Im Bereich des Wasserwulstes entstehen hinter den regelmäßigen metallischen Stegen gleich mehrere solcher Wirbelstraßen, die hier aus Wasserwirbeln bestehen. Sie üben in ähnlicher Weise Kräfte auf die angeströmte Fläche des Siebs aus und bringen dessen Eigenschwingungen zur Resonanz. Jedes der vielen benachbarten Wirbelpaare wirkt auf dieselbe Region des Blechs zurück. Zu einer einheitlichen kollektiven Schwingung des ganzen Siebbereichs kommt es nur, wenn die Wirbel sich synchron ablösen und ihre Einzelkräfte gegenseitig verstärken (siehe »Synchronisation«). Passiert das wirklich? Fotografische Untersuchungen des Strömungsfelds an einem vergrößerten und vereinfachten Modell legen nahe, dass die Wirbel angrenzender Löcher tatsächlich aneinander koppeln, während sie sich vom Blech entfernen.

Das Phänomen ist relativ robust gegenüber Störungen. Schwingt das durchströmte Element des Siebs in Resonanz mit der Anregungsfrequenz der Wirbel, so ändert sich daran auch dann nichts, wenn die Auftreffgeschwindigkeit des Wassers in gewissen Grenzen variiert. Das schwingende Blech rastet auf die Eigenschwingung ein. Infolge dieses »Lock-in«-Verhaltens bleibt die Tonhöhe erhalten. Abweichungen zwischen Anregungs- und Resonanzfrequenz senken allerdings die Amplitude. Die verringerte Auslenkung macht sich dann in einer entsprechend abnehmenden Lautstärke bemerkbar.

Bei einem Exemplar eines Teesiebs ist es uns durch Variation der Falldistanz des Wassers sogar gelungen, unterschiedliche Eigenschwingungen des Lochblechs in Resonanz zu versetzen und damit Pfeifgeräusche verschiedener diskreter Frequenzen anzuregen. Mit der Länge des Strahls wuchs auch die jeweilige Tonhöhe. Bei Fallhöhen zwischen zwei Tonstufen und außerhalb des Lock-in-Bereichs verstummte das Teesieb jedoch.

Quelle

Suhr, W.: Pfeiftöne vom Teefilter. Physik und Didaktik in Schule und Hochschule, 2020

Originalpublikation

Regentropfen auf der Achterbahn

Es lohnt sich im leichten Nieselregen die Tropfenbildung auf Blättern und Trieben zu beobachten. Wasserliebende (hydrophile) Pflanzen halten die winzigen Tröpfchen zunächst durch die Adhäsionskraft fest. Da sich Wassertröpfchen selbst am meisten lieben, fließen benachbarte Tröpfchen zusammen und bilden größere Tropfen. Je größer/schwerer der Tropfen, desto mehr macht sich die Schwerkraft bemerkbar. Das führt dann dazu, dass die Tropfen sich schließlich in Bewegung setzen und sich in Richtung tiefster Stelle bewegen. Dort bleiben sie meist nicht lange, weil sie weiter wachsen, bis die Schwerkraft die Adhäsionskraft überwindet und die Tropfen zu Fall bringt. Vorher bilden sie aber die Umgebung ihrer Kleinheit entsprechend en miniature ab.

Lichtreflexionen am Strand

Es ist, als ob das Meer ein- und ausatmet. Dabei fließen Wellen den Strand hinauf und wieder hinab. In der im Foto festgehaltenen Situation hat sich das Wasser gerade zurückgezogen, bevor es wieder einen neuen Versuch startet, das Land zu erobern – im typischen Rhythmus des akustisch untermalten Auf- und Abschwellens.
Im Licht der Sonne ist die Grenze zwischen trockenfallendem Strand und dem Wasser ein mehr oder weniger breiter heller Streifen, der sich hier wie eine schwankende Diagonale durch das Bild zieht. In diesem Streifen ohne eindeutige Zugehörigkeit sind die Sandkörnchen noch so nass, dass jedes von ihnen das Licht in die Richtung reflektiert, die durch die Orientierung der spiegelnden Flächen vorgegebene Richtung wird. Bei so vielen Teilchen wird auch auf engstem Raum eine darunter sein, die Licht in unsere Augen lenkt, so dass es fast so aussieht als würde die Fläche als Ganzes spiegeln.
Auf dem nahezu trockenen Strand gibt es nach dem kurzfristigen Rückzug nur noch einzelne benetzte Flächen auf den Steinen, die zufällig so orientiert sind, dass wir das gespiegelte Licht sehen. Einen Schritt weiter würde es zwar auch nicht viel anders aussehen, aber dann sind es andere Flächenelemente, die uns das Sonnenlicht zuschicken.
Im flachen Wasser sind es zum einen wieder die benetzten Steine und einige Wellenflanken, die uns das Licht zuspiegeln. Hinzu kommen auf dem Wasser driftende weiße Schaumfladen, die das Licht diffus in alle Richtungen reflektieren (links unten).
Das Wasser ist ansonsten blau. Nicht weil Wasser an sich blau ist – dazu ist die Wasserschicht viel zu dünn, als dass man seine Farbe sehen könnte. Aus dem Alltag weiß man, dass die üblichen Schichtdicken von wenigen Dezimetern noch völlig farblos erscheinen. Vielmehr reflektiert es das aus fast allen Richtungen blaue Himmelslicht.

Rätselfoto des Monats September 2021

Warum ordnet sich der lockere Split allein infolge der Benutzung der Straße wellenförmig an?


Erklärung des Rätselfotos des Monats August 2021

Frage: Warum ist die Spiegelung im Schatten besser?

Antwort: Das schräg von links einfallende Sonnenlicht wird im hinteren Teil der Wasseroberfläche sowohl spiegelnd als auch an den braunen Schwebstoffen im Wasser diffus reflektiert bzw. gestreut. Aus unserer Position bzw. der des Fotografen sehen wir aber nur die diffuse Reflexion, durch die das Sonnenlicht in alle Richtungen gestreut wird – also auch in unsere Augen. Und obwohl die Intensität des gespiegelten Lichts auf der Wasseroberfläche wesentlich größer ist, bekommen wir davon nichts mit, weil nach dem Reflexionsgesetz: Einfallswinkel = Reflexionswinkel das Licht nach schräg rechts reflektiert wird. Wenn man dort stünde und auf das Wasser in Richtung Sonne blickte, würde einem das gespiegelte Licht blendend in die Augen fallen.
Der (bezüglich des Sonnenlichts) beschattete Bereich im Vordergrund wird lediglich vom Streulicht des Himmels und anderer Objekte wie etwa der Bäume und der Häuser im Hintergrund beleuchtet. Dabei wird es im Wasser ebenfalls spiegelnd und diffus reflektiert. Diesmal kommt das Licht jedoch aus Richtungen, aus denen es spiegelnd in unsere Augen gelangt. Das auch in diesem Fall an den Streuteilchen im Wasser diffus reflektierte Licht ist jedoch von so geringer Intensität, dass es kaum störend in Erscheinung tritt.
Schaut man sich die Szenerie genauer an, so erkennt man, dass ein Teil des in der Sonne liegenden rechten Brückenbogens hell genug ist, um die diffuse Reflexion des Sonnenlichts wenigstens teilweise zu überstrahlen.

Abbildung einer Linse aus Wasser

Wenn Wasser sich zum Beispiel an/auf dem Teil einer wasserliebenden Pflanze sammelt, bildet es einen Tropfen, um die Oberfläche so klein wie möglich zu machen. Der Tropfen wird von den meisten Blättern bis zu einer bestimmten Größe „gehalten“, weil die Grenzfläche mit dem Blatt weniger Energie erfordert als mit der Luft. Doch die Schwerkraft ist allenthalben wirksam. Je größer der Tropfen und damit seine Masse werden, desto stärker macht sich diese bemerkbar. Der Tropfen wird in die Länge gezogen bis die Schwerkraft größer ist als die Adhäsionskraft mit der Pflanze. Der Tropfen fällt.
Soweit zur Vorgeschichte dieses Fotos. Denn hier hat sich ein sehr großer Tropfen zwischen den Früchten (?) einer Pflanze gebildet. Weil der Tropfen gleich von mehreren Seiten gehalten wird, nimmt er eine eindrucksvolle Größe an.
Das wiederum qualifiziert den Tropfen zu einer entsprechend großen Sammellinse, durch die die Umgebung verkleinert und kopfstehend abgebildet wird. Die Verkleinerung hat den Vorteil, dass wir durch die Wasserlinse blickend einen größeren Bereich der dahinter befindlichen Pflanzenteile überblicken können.
Soweit zur Physik. Aufgefallen ist mir dieses Detail allerdings aus anderen Gründen. Es sah einfach schön aus – das Zusammenspiel der filigranen verkleinerten Strukturen mit den Strukturen normaler Größe.

Minispinnennetz

Spinnennetze in freier Natur bekommt man meistens eher ins Gesicht als zu Gesicht. Es sei denn das Spinnennetz wird nächtens benetzt, statt dass in ihm fette Beute hängen bleibt. In diesem Fall (oberes Foto) kommt verschärfend hinzu, dass es sich um ein Mininetz handelt, das man normalerweise weder so noch so wahrnimmt. Mich hat erstaunt, dass alles dran ist wie an einem normal großen Netz – nur eben kleiner. Das gilt auch für die Tropfen. Insbesondere an den Stellen, an denen keine Tropfen sind, sieht es fast so aus, als wäre hier auch eine Unterbrechung im Netz. Allerdings ist unser Vertrauen in die gewohnte Beschaffenheit der Welt so groß, dass wir nicht davon ausgehen, diese Leerstellen seien wirklich leer. Und wenn man ganz genau hinschaut (auf Foto klicken), schimmert uns der „missing link“ auch schemenhaft entgegen.
Die starke Wasserliebe des Netzes (Hydrophilie) und die dadurch gegebene Möglichkeit, Wasser aus der Luft zu ernten hat in der physikalischen Forschung bereits dazu geführt, einmal mehr die Natur zu plagiieren und Materialien mit ähnlichen hydrophilen Eigenschaften zu konzipieren.

Schatten und Spiegelung

In diesem auf den ersten Blick surreal wirkenden Ausschnitt aus einem Hafenbecken beobachtet man zwei Abbildungen der von der Sonne beschienenen Gegenstände auf dem Wasser. Man ist vielleich geneigt, sie als Schatten abzutun. Schaut man sich die Dinge genauer an, so erkennt man, dass die Treppe und das Geländer einerseits eine Abbildung direkt unter dem Original aufweist und eine weitere aus anderer Perspektive rechts daneben. Aber ein Foto kann die Dinge nicht zugleich aus zwei Perspektiven zeigen. Vielmehr handelt es sich im ersteren Fall um keinen Schatten sondern um eine Spiegelung der Brücke und im letzteren um einen Schatten, der von der links strahlenden Sonne hervorgerufen wird.
Genau genommen kann auf dem Wasser kein Schatten entstehen. Wenn aber das Wasser wie im vorliegenden Fall mit Schwebstoffen verunreinigt ist, an denen das Sonnenlicht gestreut wird, erscheinen die von den schattenwerfenden Gegenständen ausgeblendeten Bereiche dunkel, weil uns von dort kein bzw. wesentlich weniger Licht erreicht.
Entsprechendes beobachtet man bei den beiden Pfählen. Aus der Perspektive des Fotos erscheint die Spiegeung wie eine Verlängerung der Pfähle und man muss schon genau hinschauen, wo der reale Pfahl endet und die Spiegelung beginnt. Von dieser Stelle gehen die horizontal orientierten „Schatten“ der Pfähle im Wasser aus. Sie haben einen deutlichen Blaustich, weil zwar das Sonnenlicht ausgeblendet wird, das blaue Himmelslicht diese sonnenlichtfreien Streifen aber erreicht und von dort diffus reflektiert wird.

Seerosen mit Riesentropfen

Natürlich fällt zunächst die schöne Seerose ins Auge. Sie präsentiert sich hier einige Zeit nach einem Regenschauer, der seine Spuren in fast perfekt kreisförmigen Wasserlinsen auf den Blättern hinterlassen hat. Die Ursache für die nach Größe und Verteilung eher statistisch verteilten Tropfen ist das Ergebnis einer Wechselwirkung zwischen der Blattoberfläche und dem Regenwasser zu sehen. Die Blätter zeigen eine deutliche Ablehnung des Wassers (wohl um die Fotosyntheseaktivitäten nicht durch eine flächendeckende Benetzung einzuschränken). Diese Hydrophobie führt dazu, dass sich das Wasser entgegen der Tendenz sich schwerkraftbedingt gleichmäßig über die Blätter zu verteilen auf eine möglichst kleine Fläche zurückzieht. Die kleinste Fläche auf der die größte Menge Wasser unterzubringen ist, ist der Kreis. Wenn die Schwerkraft nicht wäre, würde sich das Wasser noch mehr in Richtung Kugelgestalt aufwölben, wodurch die Kontaktfläche mit dem Blatt noch weiter hätte reduziert werden können.
Immerhin wird der Kontakt zwischen Wasser und Blatt nicht ganz eingestellt. Die „Wasserlinsen“ und die Blattoberfläche ziehen sich zumindest so stark an, dass sie trotz einer gewissen Neigung der Blättter nicht zur tiefsten Stelle rollen/gleiten, sondern dort bleiben, wo sie entstanden sind.
An den hellen Punkten am Rande eines jeden Tropfens, die spiegelnde Reflexionen des Sonnenlichts, sieht man, dass die Sonne schon wieder scheint.

Anhängliche Seifenblase

Die Seifenblase hat das grüne Weinblatt in seine Oberfläche integriert. Der kleine Zweig schräg darüber befindet sich außerhalb der Blase.

Seifenblasen bestehen aus einem kugelförmigen Film aus Seifenwasser, der innen mit Luft oder einem anderen Gas gefüllt und außen von Luft umgeben ist. Wenn man Seifenblasen auf die Reise schickt, so kommen sie meist nicht sehr weit, weil sie vorher platzen. Ihre Lebensdauer ist vor allem aus zwei Gründen stark begrenzt. Der Wasserfilm wird zum einen durch Verdunstung von Wasser und zum anderen durch das schwerkraftbedingte Abfließen von Wasser immer dünner. Wenn man genau hinschaut, sieht man unten an der Blase einen entsprechend wachsenden Wassertropfen hängen.
Da die Natur dazu tendiert unter den gegebenen Umständen so viel Energie wie möglich an die Umgebung abzugeben (2. Hauptsatz der Thermodynamik), wird die Oberfläche des Seifenfilms so klein wie möglich. Denn die Oberflächenenergie ist proportional zur Oberfläche. Das erklärt zum einen, warum die Seifenblase Kugelgestalt hat, zum anderen, dass die Luft im Innern des Seifenfilms zusammengepresst wird, bis der dadurch entstehende Innendruck einer Verkleinerung der Blase Einhalt gebietet.
Sobald die Dicke der Seifenhaut ein kritisches Maß unterschreitet, führt der Innendruck zum Platzen der Blase. Die Blase platzt manchmal auch schon vorher, wenn sie beispielsweise mit bestimmten Hindernissen kollidiert und zerrissen wird. Denn sobald ein Loch in der Seifenhaut entsteht, entweicht das Gas aus dem Innern und der Wasserfilm schnurrt zu Wassertropfen zusammen. Jeder kennt den enttäuschenden Versuch von Kindern, Seifenblasen aufzufangen. Sobald die Blase berührt wird, zerplatzt der schöne Traum. Weil die Haut der Hände wasserliebend (hydrophil) ist, sich also benetzen „möchte“ saugt diese bei Berührung gewissermaßen das Wasser aus der Blase.
Ähnliches gilt für viele weitere Gegenstände. Interessanterweise gehören manche Blätter nicht dazu. Im Gegenteil, die Seifenblase integriert manchmal eine Blattoberfläche in ihre eigene mit ein und bleibt an dem Blatt hängen (siehe Foto). Dies ist vor allem dann der Fall, wenn das Blatt feucht ist. Auf diese Weise – bis auf kleine windbedingte Schwankungen immobil geworden – überlebt die Blase in vielen Fällen erstaunlich lange. Man kann die Blase von allen Seiten betrachten und dabei die Spiegelungen von Gegenständen im Zusammenspiel mit den Gegenständen selbst genießen, sowie das farbliche Irisieren der Seifenhaut bewundern.

Rätselfoto des Monats August 2021

Wodurch und warum wird die spiegelnde Reflexion auf Teilen des Wassers verhindert?



Erklärung des Rätselfotos des Monats Juli 2021

Frage: Was hält die Burg zusammen?

Antwort: In trockenem Zustand rinnt Sand durch unsere Finger. Kaum gerät Sand jedoch mit Wasser in Berührung, fließt er nicht mehr und lässt sich in nahezu beliebige feste Gestalt bringen. Wenn sich trockener, also von Luft umgebener Sand mit Wasser verbindet, wird dabei verhältnismäßig viel Grenzflächenenergie an die Umgebung abgegeben. Und da die Natur bestrebt ist, soviel Energie wie unter den gegebenen Bedingungen möglich ist, an die Umgebung abzugeben, werden so viel Sand wie möglich mit Wasser benetzt und dabei so viele Sandkörner wie möglich miteinander verbunden. Wollte man die Körner wieder voneinander trennen und damit die energiereicheren Grenzflächen zwischen Luft und Sand wieder herstellen, müsste man die bei der Benetzung abgegebene Energie wieder zurück in das System stecken. Die dazu nötige Kraft ist Ausdruck der Steifigkeit und Festigkeit des nassen Sands. Durch die z.B. von der Sonne geförderte Verdunstung des Wassers wird der Sand allmählich wieder trocken und die Burg zerfällt.

Das Schöne muss nicht erklärt werden…

Als ich diese Holzstruktur eines in der Brandungszone des Meeres liegenden angeschwemmten Baumes entdeckte, war ich vom ersten Moment an von der Naturschönheit fasziniert. Der Baum wurde im ewigen Wellengang allmählich dekonstruiert und dabei in ein Naturkunstwerk (ein schönes Oxymoron) umgewandelt. Mir fiel dazu der Vers eines Gedichts von Christian Morgenstern ein:

Der Quellnixe wehendes Fontänenhaar.**

Ich machte mir Gedanken, wie es wohl zu dieser ästhetisch ansprechenden Gestalt gekommen sein mag, bis mir einfiel, dass man Schönheit gar nicht erklären muss – wohl auch deshalb, weil man es nicht kann. Sagte nicht bereits Friedrich Schiller (1759 – 1805):

Schön, kann man also sagen, ist eine Form, die keine Erklärung fordert, oder auch eine solche, die sich ohne Begriff erklärt„.*


* Friedrich Schiller. Unsterbliche Hoffnung. Wien und Stuttgart 1952, S. 73
** Christian Morgenstern. Stufen. München 1984. S. 41

Doppelschatten und Heiligenschein

Wer an einem kühlen Morgen unterwegs ist, wenn die Wiesen und Büsche noch vom Tau benetzt sind, hat vielleicht das Glück seinen Schattenkopf von einem Heiligenschein umkränzt zu erleben. Wer noch mehr Glück hat, wie es mir ergangen ist (siehe Foto), findet sich auch noch seinen Schatten verdoppelt. Leider ist der zweite Schatten, den man oberhalb des ersten Schattens sieht, ohne Heiligenschein. Ob das vielleicht daran liegt, dass man eine helle und eine dunkle Seite in sich trägt?

Rätselfoto des Monats Juni 2021

Warum erscheint das Spiegelbild der weißen Fontänenspitze rot?

 


Weiterlesen

Unter dem Pflaster liegt die Stadt

Ich kannte mal einen, der ging bei Regenwetter und kurz danach immer gesenkten Hauptes durch die Stadt. Auf den ersten Blick sah ich darin eine Bestätigung für die Regel, dass Regenwetter traurig mache und man daher den Kopf hängenlasse. Aber dem war nicht so. Er blickte durch die nassglänzenden Pflastersteine und Pfützen in eine andere Welt, die Welt unter dem Pflaster, die dann besonders schön zur Geltung kommt, kurz nachdem der Regen vorbei und die Sonne wieder das Regiment übernommen hat. Kennt jemand die Stadt, die sich hier durch ein bekanntes Gebäude zu erkennen gibt?

Wer sich eher nach dem unter dem Pflaster liegenden Strand sehnt, schaue sich den früheren Beitrag an.

Rege Regenwürmer im Regen

Als ich gestern Morgen nach einer regenreichen Nacht einen Spaziergang unternahm, musste ich auf der zum Glück wenig befahrenen Asphaltstraße, die durch landwirtschaftliche Nutzflächen führt, aufpassen, wohin ich trat. Die Straße war mit Regenwürmern geradezu übersät. Die Würmer befanden sich in langsamer Bewegung, obwohl ich trotz längerer Beobachtung kein eindeutiges Zielverhalten feststellen konnte.
Dem Namen nach könnte man den Eindruck haben, dass die Würmer den Regen lieben und sich der Feuchtigkeit deshalb exponieren. Doch wenn ihr Name überhaupt etwas mit dem Regen zu tun hat und sich nicht vielmehr auf ihr reges Tun in der Erde bezieht, dann eher weil sie im Gegenteil ihre mit Wasser gefluteten Röhren in der Erde verlassen. Denn einer herrschenden Auffassung zufolge würden Regenwürmer insbesondere bei langanhaltenden Regenperioden in den Gängen ihrer Wohnhöhlen ersticken. Weil die Würmer durch Hautatmung Sauerstoff aufnehmen, würde der im Wasser gelöste Sauerstoff nicht ausreichen. Andererseits zeigen wissenschaftliche Untersuchungen, dass die Würmer es bis zu 35 Stunden unter Wasser aushalten bevor sie sterben. Deshalb können sie auch monatelange Überschwemmungen überleben.
Wie dem auch sei, nach längerem Regen fühlen sie sich offenbar oberhalb der Erde am wohlsten und verschmähen auch eine Asphaltstraße nicht. Ich konnte sogar beobachten, dass einige Würmer ein freiwilliges Bad in einem auf der geneigten Straße fließenden Wasserstrom nahmen. Andere schienen sogar die Gelegenheit zu nutzen sich paarweise aneinander zu legen und sich (soweit ich das mit meinem flüchtig angelesenen Wissen beurteilen kann) zu begatten – wechselseitig, denn sie sind Zwitter und können beides.
Da werde noch einer schlau aus den bei Regen regen und erregten Regenwürmern.

Schon Heinz Erhardt (1909 – 1979) befasste sich lyrisch mit der Namensgebung des Wurms:

Der Regenwurm

Am Fuß von einem Aussichtsturm
saß ganz erstarrt ein langer Wurm.

Doch plötzlich kommt die Sonn herfür
erwärmt den Turm und auch das Tier

Da fängt der Wurm an sich zu regen,
und Regenwurm heißt er deswegen.*


Du sollst dir kein Bildnis machen

Was unterscheidet den auf dem Foto zu sehenden, auf einer nicht ganz ruhigen Wasseroberfläche spiegelnd reflektierten Menschen? Ihr sagt: Ich sehe nur die Reflexion des Menschen und das sei ein Unterschied zur direkten Ansicht. Doch wie ist es mit einem Objekt, das ich durch aufsteigende warme Luft hindurch sehe, wie es zuweilen bei einer aufgeheizten Straße oder bei einem Feuer beobachtet werden kann? Es erscheint durch die Brechung des Lichts in der heißen Luft noch stärker verzerrt als der im Wasser gespiegelte Mensch. Sehe ich ihn nicht direkt? Denn Luft ist auch zwischen ihm und mir, wenn er mir näher und weniger verzerrt ist. Weiterlesen

Sich widersprechende Strömungen

Der Widerspruch ist zwar recht zaghaft und tröpfelt nur so dahin, aber er ist vorhanden und erfolgt sogar in Übereinstimmung mit den Naturgesetzen. Demnach fällt ein waagerecht ausströmender Wasserstrahl nicht einfach senkrecht nach unten, sondern beschreibt eine Wurfparabel. Damit wird der Tatsache Rechnung getragen, dass der waagerecht aus dem Rohr herausströmende, dabei plötzlich den Halt der Röhre verlierende und jetzt nur noch der Schwerkraft ausgesetzte Wasserstrahl nicht einfach stumpf nach unten stürzt, sondern dabei seinen einmal eingeschlagenen waagerechten Weg beibehält.
Doch warum scheint ein Teil des ausströmenden Wassers diesem Prinzip zu widersprechen, indem er genau das Gegenteil von dem tut was wir rein lebensweltlich erwarten und von der Physik sogar gefordert zu werden scheint?
Muss man sich bei so viel Widerspruch noch wundern, dass dieser Strahl sich auch noch weigert als Strahl in Becken zu fallen indem er in einzelne Tropfen zerfällt?
Geht es hier noch mit rechten Dingen zu?

Nasse Flecken wie aus dem Nichts

Bei einem morgendlichen Spaziergang auf einer schmalen Asphaltstraße durch die landwirtschaftlichen Felder sehe ich zahlreiche dunkle Flecken (siehe Foto). Bei näherem Hinsehen zeigt sich zum einen, dass die vermeintliche Färbung durch Nässe hervorgerufen wird. Das ist insofern merkwürdig als es in der vergangenen Nacht zwar kalt aber völlig trocken gewesen ist. Zum anderen ist zu erkennen, dass in der Mitte eines jeden Flecks ein helles Körnchen sitzt (Close-up oben links). Dabei handelt es sich um Mineraldünger in Granulatform, der bei der Bewirtschaftung der Felder auf die Straße gelangt ist. Die meisten Mineraldünger liegen als Salze vor. Sie sind daher hygroskopisch, d.h. sie nehmen Feuchtigkeit aus der Umgebung auf, wann immer es möglich ist. Man kennt das vom Kochsalz, das bei hoher Luftfeuchtigkeit und offener Lagerung ebenfalls nass wird. Im vorliegenden Fall haben die Salzkristalle nicht nur Wasserdampf aufgenommen, sondern vielleicht auch noch davon profitiert, dass in der vorausgegangenen Nacht die Temperatur unter den Taupunkt abnahm, sodass sich auch noch kondensierender Wasserdampf auf weitgehend isolierten kalten Oberflächen absetzte, so auch auf den Salzkörnern. Diese gingen dadurch teilweise in dem Maße in Lösung, wie Wasser aufgenommen wurde. Daher floss die wässrige Lösung abgesehen von Störungen durch Inhomogenitäten des Untergrunds radial in alle Richtungen und hinterließ einen dunklen, feuchten Fleck.

Rätselfoto des Monats April 2021

Wie kommt es zu den Feuchtigkeitsstrukturen?


Erklärung des Rätselfotos des Monats März 2021

Frage: Wie kommt es zu diesem Phänomen?

Antwort:
Bei einer Teepause, in der ich ein Stück Kandis in den Tee fallen ließ, entstand eine Blase und eröffnete mir einen kurzen Linsenblick auf das Stück Kandis. Dieses erschien nämlich deutlich verkleinert, so als ob man durch eine Zerstreuungslinse blickte. Wie kann das sein?
Da der Blase ohnehin nur eine kurze Lebensdauer beschieden war und die geselligen Umstände es unmöglich machten, der Sache vor Ort auf den Grund zu gehen, rekonstruierte ich die Situation später in einer Tasse mit Wasser und einem Tropfen Spülmittel und nahm einen Strohhalm zu Hilfe, mit dem ich auch noch die Größe der Blasen bestimmen konnte. Und anstelle des Kandis, legte ich eine Cent- Münze auf den Grund der Tasse.
Mit einer solchen Anordnung lässt sich schön verfolgen, dass die Münze wie ehemals der Kandis durch die Blase hindurch betrachtet tatsächlich verkleinert erscheint und zwar umso mehr je kleiner die Blase ist.
Zur Erklärung muss man sich zunächst klarmachen, dass es sich bei der Blase um eine Halbblase handelt und selbst das stimmt nur ungefähr. Damit eine Blase überhaupt als solche existieren kann, muss der Innendruck größer sein als der Außendruck. Denn die Tendenz der Seifenhaut, sich zu einem kugelförmigen Tropfen zusammenzuziehen muss durch einen höheren Innendruck kompensiert werden. Dadurch wird nicht nur die Seifenhaut straff gehalten, sondern im Falle der auf dem Wasser driftenden Halbblase auch die Wasseroberfläche ein wenig wie eine konkave Linse eingedellt. Blickt man durch eine solche Zerstreuungslinse, so erscheinen die durch sie betrachteten Gegenstände, also hier die 1-Cent-Münze verkleinert. Die verkleinernde Wirkung ist umso größer, je kleiner die die Blase und damit die Brennweite der von ihr geformten Linse ist .
In der obigen Abbildung ist die Blase wegen ihrer Transparenz nur indirekt zu erkennen – durch die tassenfarbene Spiegelung auf dem konkaven Rand der Blase und durch Interferenzfarben im Bereich des Spiegelbilds des lichtspendenden Fensters.

Selbstbegegnung von Wellen

In dieser Szene auf einem kleinen Bach laufen die Wellen auf ein Hindernis zu. Sie werden von ihm reflektiert und überlagern sich mit den weiterhin einlaufenden Wellen. Dabei kommt es zu Verstärkungen und Abschwächungen der Höhe (Amplitude) der Wellenberge und der Tiefe der Wellentäler. Deutlich zu sehen ist die momentane Aufhebung der Wellenberge und -täler, wenn der Phasenunterschied zwischen einlaufender und reflektierter Welle gerade eine halbe Wellenlänge beträgt.
Dass man die Wellen als solche im an sich transparenten Wasser überhaupt sieht, ist den Spiegelungen der den Bach umgebenden Bäume auf dem Wasser zu verdanken. Diese führen überdies zu einer weiteren Strukturierung der Wasseroberfläche.
Bei der Betrachtung des Fotos sollte man jedoch nicht vergessen, dass es sich insofern um eine künstliche Situation handelt, als die natürlicherweise auftretenden Bewegungen in der Kameraaufnahme gewissermaßen eingefroren sind und so nie in natura beobachtet werden können. Nur dadurch, dass neben der Art und Weise (Auswahl, Blickwinkel, Belichtungszeit usw.) wie das Natürliche im Foto zu etwas Künstlichem wird, kann es manchmal auch zu etwas Künstlerischem werden.

Wo bleiben die Gesichter?

Zu Zeiten, in denen man nur maskierte Gesichter zu Gesicht bekommt, wird die Sensibilität für das Vermisste und Zurückgesehnte derart verfeinert, dass man sie schließlich überall sieht und sei es in einer noch so winzigen Blase. Damit wird vermutlich auch das Gefühl von vielen von uns zum Ausdruck gebracht, in einer Blase zu leben. Denn nur unter diesen Bedingungen kann man zur Zeit ohne Maske so sein wie man ist.

Schatten und Kristalle

Vor ein paar Tagen fror der Teich noch einmal zu, jedenfalls: fast. Am geschützten Rand sind noch einige flüssige Stellen, die gerade von linear vorauseilenden Eiskristallen kolonialisiert werden, indem sich zwischen ihnen eine flächenhafte Eisschicht ausbildet. Da diese Eisschicht – vermutlich wegen der massenhaften Verunreinigungen durch faulende Blätter etc. eine aufgeraute Oberfläche aufweist, enden die perfekten Spiegelungen der randständigen Pflanzen auf der glatten Wasserhaut zunehmend  in schemenhaften Reflexionen auf der Eisfläche.
Wie man an den hellen Lichtreflexen an den Eiskristallen erkennt, mischt sich auch die Sonne in das Geschehen ein. Sie sollte schließlich die Oberhand gewinnen und die festen Strukturen in das für  unsere Augen amophe Wasser zurückführen. Aber solange dieser Prozess noch nicht vollendet ist, genießen wir die stille visuelle Zwiesprache zwischen den linearen Strukturen von Schatten und Kristallen…

Feuchte Blätter lieben feuchte Oberflächen

Manchmal scheint die Natur den Menschen nachzuahmen. Als ich diesen Baumstamm, der auch schon bessere Tage gesehen hat, wie eine Anschlagtafel mit verschiedensten Blättern vorfand, wurde ich an das Schwarze Brett so mancher Institutionen erinnert. Dort sind auch die verschiedensten Blätter angeschlagen. Sie landen dort allerdings nicht weil sie so schön sind, sondern wegen ihres vermeintlichen Informationsgehalts. Da erscheinen mir diese Baumblätter wesentlich sehenswerter und informationsreicher. Dieses gekrümmte schwarze Brett betrachtete ich mit Wohlwollen und Verwunderung darüber, wie es sich die verschiedensten Blätter hat aneignen können und nach welchen Kriterien sie auf die Fläche verteilt wurden. War es der Wind? Oder sind sie im letzten Herbst nur von den Bäumen herabgefallen wie die umliegenden Blätter auch. Und warum haften sie so fest? Weiterlesen

Der Kamm im Bach…

Der Bach fiel einmal mitten im Wald über einen Stein so, daß er aussah wie ein großer silberner Steckkamm.*

Vielleicht hat Robert Musil (1889 – 1942) einen solchen silbernen Kamm gemeint, dessen fluide Zinken im Zentrum des Fotos, zwar etwas verbogen und zittrig sind, aber immerhin gut genug für eine Pareidolie. Mit etwas Glück findet man im Vordergrund auch noch ein vierblättriges Kleeblatt, ebenfalls fluide, aber vielleicht gerade deshalb Glück bringend.

 


* Robert Musil. Drei Frauen. Reinbek: Rowohlt 1994, S. 20

Ohne Anomalie des Wassers geht es nicht

Als Kind war ich erstaunt, dass man viel mehr Bauklötze in den dafür vorgesehenen Kasten bekam, wenn man sie ordentlich hineinsetzte, jeden an seinen Ort. Irgendwann danach erschien es mir plausibel, weil – so mein Gedanke – jeder Zwischenraum genutzt wird, anders als wenn alles kreuz und quer durcheinander liegt. Ich musste wohl in der Zwischenzeit so etwas wie das Prinzip der Invarianz (nach Jean Piaget (1896 – 1980) ) verinnerlicht haben, dass eine Anzahl von Klötzen immer dasselbe Volumen beanspruchte, egal ob sie ungeordnet und geordnet waren. Im ungeordneten Zustand ist nur mehr oder weniger viel Luft zwischen ihnen. Weiterlesen

Wind und Wellen als künstlerische Gestalter

Hier einmal wieder eine der Skulpturen, die von Wind und Wellen am Strand geschaffen wurden, nachdem eine Sturmflut einen Teil des gewachsenen Bodens ins Meer gespült hat und nur eine längliche Insel zurückließ. Der Boden bestand aus mehreren Lagen weißen und schwarzen Sandes, die durch wechselnde Winde geschaffen wurden (siehe früherer Beitrag). Den anschließend etwas ruhiger anbrandenden Wellen blieb nur noch, diesen Brocken etwas gefühlvoller zu bearbeiten und zu der naturschönen Skulptur zu gestalten, die im Foto zu sehen ist.
Eindrucksvoll sind daran insbesondere die Höhenlinien, die durch die Wechsel der weißen und schwarzen Sandlagen möglich wurden. Da der anfängliche Brocken in mehreren unterschiedlichen Winkeln angeschnitten wurden, zeigt er ein vielfältiges Profil. Zum Vordergrund hin laufen vor allem die weißen Schichten zu faserigen Fäden aus, die leicht darüber hinwegtäuschen können, dass es sich „nur“ um Sand handelt. Aber was heißt „nur“?
Sein Gestaltreichtum ist „auch im Sand des Meeres unermeßlich den noch kein Linné nach seinen Gestalten geordnet hat“*
Eingerahmt wird die Skulptur durch Wasserstrukturen, die (auf dem Foto natürlich eingefroren) einen Eindruck von den leichten Strömungen des seichten Wassers vermitteln, das hier bei Ebbe nur noch von den größeren Wellen mit Nachschub versorgt werden.

 


* Georg Christoph Lichtenberg. -Schriften und Briefe. München 1980, S. 498

Winterimpressionen

Weiterlesen

Täuschende Sandstrukturen am Strand

Diese Sandstruktur ist im Überflutungsbereich eines Sandstrands entstanden. Sie wird von einem dünnen Waserfilm umspült, der aus den Ausläufern der an den Stand anbrandenden Wellen hervorgeht. Winzige Wellen zeugen vom fließenden Wasser. Die Tagesringe des etwa 50 cm langen Sandgebildes gehen auf die Ebbe- und Flutzyklen zurück, die an ihm zehren und an seiner Substanz knabbern. Sie tun dies aber in einer erstaunlich geordneten Weise, indem ein nahezu konzentrisches (mir fehlt ein besseres Wort) Gebilde entsteht.
Für mich und manche anderen Betrachter sieht die Struktur allerdings nicht erhaben, also aus dem Boden herausragend aus, sondern eher so, als würde sie sich wie ein tiefer Brunnen in den Boden absenken. Weiterlesen

Eis ist mehr als gefrorenes Wasser

Gefrierendes Wasser und schmelzendes Eis präsentieren sich unter natürlichen Bedingungen in einem überbordenden Gestaltreichtum, der durch die physikalische Beschreibung als Phasenübergänge von flüssig nach fest und fest nach flüssig nur unzureichend erfasst wird. Den jeweiligen äußeren Umständen entsprechend laufen der Kristallisations- und Schmelzprozess meist in Wechselwirkung mit anderen physikalischen Vorgängen ab, die zu sehr komplexen und nicht selten ästhetisch ansprechenden Kompositionen aus Eiskristallen im jeweiligen Kontext der natürlichen Umgebung führen können. Zwischen streng geometrisch aufgebauten hexagonalen Kristallstrukturen und organisch wirkenden floralen Mustern entfalten sich zahlreiche Mischformen, deren Zustandekommen – wenn überhaupt – nur durch detektivische Kleinarbeit physikalisch zu entziffern ist.
In einigen der ausgewählten Fotografien drängen sich Korrespondenzen zwischen Eismustern und organischen Strukturen auf. Es entfaltet sich so etwas wie ein anspielungsreicher, stummer Dialog zwischen zwei Sphären, die wir als völlig verschieden wahrzunehmen gelernt haben. So scheinen sich die Eisblumen am Fenster in ihrem Gestaltreichtum an floralen Mustern zu orientieren und es sieht so aus, als ob die Raureifnadeln am Tannenzweig lediglich die realen Tannennadeln imitierten.
Ich werde über die Wintermonate immer mal wieder ein Foto auswählen das ein interessantes Szenario zwischen Gefrieren und Schmelzen aufzeigt oder einfach nur schön ist. Die unmittelbare Wirkung auf den Betrachter steht im Vordergrund.

 

 

Worte erschaffen Dinge…

Gegenstände existieren, sobald es Worte dafür gibt, die sie erschaffen.
Obwohl sich die Sprache u.A. aus dem Bedürfnis heraus entwickelt hat, die ursprünglichen Kommunikationsmöglichkeiten zu erweitern und zu präzisieren, trägt sie die Potenz in sich, Wirklichkeiten zu entwerfen und sie sich in der einen oder anderen Form anzueignen. Dazu gehört auch, dass die Grenzen der darin enthaltenen Möglichkeiten erkannt werden einschließlich eben dieser Erkenntnis…

Die im Foto abgebildete Kreation ist ein hybrides Gebilde, aus menschlicher und natürlicher Gestaltung hervorgegangen. Eine Spielerei am Strand am Tage und die darüber geschwappte Flut in der Nacht hinterließen dieses „natürliche Kunstwerk“.

Wenn Wasser zum Schmiermittel wird

H. Joachim Schlichting. Spektrum der Wissenschaft 12 (2020), S. 70 -71

Vermehrung der Kraft
durch weichenden Widerstand

Novalis (1772 – 1801)

Reichert sich eine dünne Wasserschicht mit dem Abrieb mikroskopisch feiner Eispartikel an, macht das die Flüssigkeit zähflüssig und glitschig. Weiterlesen

Fließwassergemälde

Nach dem Regen regen sich auch wieder die in der hinter uns liegenden Trockenzeit verschwundenen Bäche. Sie sind wieder da, tauchen an bestimmten Stellen des Berghangs zunächst nur in Form einer kleinen Pfütze, dann aber bergabwärts immer größer werdend wieder auf, sodass man mit Recht von Bächen sprechen kann.
Und sie bringen auch gleich wieder das insbesondere bei Sonnenschein beeindruckende  Phänomen mit sich, in dem der profane Untergrund in ein veritables Kunstwerk umgestaltet erscheint: Man blickt durch das strömende Wasser, sodass das vom Untergrund ausgehende Licht ständig in andere Richtungen gebrochen wird und infolge der Belichtungszeit der Kamera auch noch strähnenförmig verfremdet wird. Natur und Technik spielen hier in ästhetisch produktiver Weise zusammen.

Selbstabbildung der Natur – Ringe und Kreuze

Ein Stein fällt in ein Becken mit Wasser, reißt eine Portion Luft mit sich, die in Form von vier (Halb-) Blasen an die Oberfläche steigen und hier einige Zeit verbringen (siehe Foto).
Schon platzt die erste Blase. Sie wäre einfach weg, wenn nicht die Sonne die dadurch ausgelösten direkt nicht zu sehenden Wellenbewegungen auf dem Wasser auf dem Grund des Beckens abbilden würde. Dort sieht man ein eindrucksvolles System heller und dunkler Ringe. Sie entstehen dadurch, dass das Sonnenlicht an den Wellen gebrochen wird, sodass die Wellenberge wie ringförmige Sammellinsen wirken, während die Wellentäler das Licht ringförmig streuen. Weiterlesen

Der Fliegende Holländer

Der Fliegende Holländer, ein Geisterschiff, das über die Jahrhunderte hinweg immer wieder gesichtet wurde, hat zahlreiche Dichter zu größeren und kleineren literarischen Gestaltungen animiert. Die Sage, manchmal auch als Fabel erzählt, ist überdies mehrfach musikalisch verarbeitet worden, wovon die Oper Richard Wagner aus dem Jahre 1842 wohl das bekannteste Werk ist. Auch in der Kunst und in jüngerer Zeit in Film und Fernsehen findet der Sagenstoff immer wieder Beachtung.
In dem Maße wie objektive Methoden der Dokumentation zur Verfügung stehen, werden die Sichtungen seltener. Die schriftlich verbürgte letzte Sichtung erfolgte 1959.
Meine eigene Sichtung erfolgt erst kürzlich und ist in diesem Foto zu sehen. Die roten Segel sind allerdings inzwischen etwas verblichen…
Die Sage und die Umstände, die zu den Sichtungen führten lassen physikalisch gesehen Fata-Morgana-Erscheinungen bzw. Luftspiegelungen als wahrscheinliche Ursachen vermuten. Luftspiegelungen sind wegen der oft großen Temperaturunterschiede auf dem Meer sehr häufig zu sehen. Sie gaben insbesondere in Zeiten, in denen die physikalischen Hintergründe dieser beeindruckenden Erscheinung noch nicht bekannt waren, Anlass zu phantasiereichen Deutungen.
Um keinen falschen Eindruck zu erwecken – das obige Foto ist zwar auch eine Spiegelung, aber keine Luftspiegelung.

Photoarchiv