//
Artikel Archiv

Wasser

Diese Schlagwort ist 202 Beiträgen zugeordnet

Der Weinkühler leckt…

Mich faszinieren immer wieder einfache technische Lösungen praktischer Probleme. Dazu gehört auch der Weinkühler aus Ton. Man füllt ihn bis zu einer passenden Höhe mit Wasser und stellt die Wein-/Sektflasche hinein. Da der Ton porös ist, sodass das Wasser allmählich hindurchsickert wird die Außenwand feucht (siehe dunklen Bereich im Foto). Die Feuchtigkeit verdunstet. Da zur Verdunstung von Wasser Energie nötig ist, wird diese der Umgebung entzogen. Dafür kommt vor allem das Wasser infrage. Dieses kühlt sich daher ab und entzieht seinerseits im gleichen Maße der Weinflasche Energie mit dem gewünschten Effekt der Temperaturerniedrigung.
Der Antrieb des Vorgangs ist in der Tendenz des Wasserdampfes zu sehen, sich möglichst gleichmäßig über den zur Verfügung stehenden Raum zu verteilen. Voraussetzung für die Funktion dieses Kühlprozesses ist allerdings, dass die Luftfeuchte nicht zu hoch ist. Bei einer relativen Luftfeuchte von 100% würde genauso viel Wasserdampf kondensieren wie entsteht und das hilft in diesem Fall überhaupt nicht.
Übrigens nutzen asssimilierende Pflanzen dasselbe Prinzip, um Flüssigkeit von der Wurzel bis in die grünen Blätter zu transportieren. Daher ist es in grünen Wäldern auch so angenehm kühl: Der Umgebung wird Energie zur Verdunstung entzogen.

Werbung

Eiskunst auf der Wasserpfütze

So manche zugefrorene Wasserpfütze (hier ein Ausschnitt) besticht durch oft naturkünstlerische (ich weiß – ein Oximoron) Muster, die in einer ziemlich direkten Weise das visualisieren, was schon vorher irgendwie da war, bevor die Temperatur unter den Gefrierpunkt sank. Will man dennoch beschreiben, was bei der Übersetzung der Beschaffenheit der Pfütze von einer hohen in eine tiefe Temperatur passierte, so muss man sich auf wesentliche Aspekte beschränken. Dazu zählen die Beschaffenheit des matschigen Untergrunds der Pfütze, die Geschwindigkeit, mit der Wasser versickert (vermutlich an den verschiedenen Stellen unterschiedlich), die Temperaturschwankungen, die Luftfeuchte, die Bedeckung des Himmels… Und selbst wenn man diese Aspekte alle in Betracht zieht, könnte wohl kein Computerprogramm die Entwicklung dieses Musters vorherberechnen. Wir kennen zwar die Naturgesetze, die bei dieser Entwicklung im Spiel sind, aber Details und insbesondere sensitive Punkte, bei denen es durch winzige Unterschiede zu qualitativ völlig anderen Strukturbildungen kommen kann, haben wir grundsätzlich nicht im Griff. Um es etwas pauschaler zu sagen: Der Zufall spielt oft mit dem Zünglein an der Waage.
Dennoch, einige typische Entwicklungen beim Zufrieren der Pfütze können zumindest im Prinzip physikalisch beschrieben werden. Wer sich dafür interessiert, sei auf frühere Beiträge verweisen, z.B. hier und hier und hier und hier und hier und hier und hier)

Strukturiertes Eisschmelzen

Eis schwimmt auf dem Wasser. Denn anders als bei vielen anderen Stoffen nimmt die Dichte von Wasser mit abnehmender Temperatur bis 4° C zwar zu, danach wird sie jedoch wieder geringer. Kaum auszumalen, wenn es diese Anomalie des Wassers nicht gäbe. Daher schmilzt eine Eisschicht auch meistens über der sie tragenden Wasseroberfläche. Wenn die feste Eisschicht jedoch wie im vorliegenden Fall in einer Regentonne verkeilt ist und am Aufsteigen als Ganzes gehindert wird, bildet sich über dem Eis eine Wasserschicht.
Das Eis schmilzt unter dem Wasser und bietet ein interessantes Szenario, wenn man sich denn die Zeit nimmt, dies zu beobachten. Man kann zwar wegen der Transparenz des Wassers kaum etwas direkt sehen, aber einige Vorgänge erlauben Rückschlüsse auf den komplexen Schmelzvorgang. So kann man beispielsweise an der Bewegung von Schmutzpartikeln erschließen, was sich in der Wasserschicht tut.
Im vorliegenden Fall haben sich die komplexen Bewegungen in den Eiskörper „eingebrannt“, was an den mehr oder weniger regelmäßigen Kanälen zu erkennen ist. Die Kanäle zeugen von wärmeren Wasserströmen, die das Eis lokal zum schmelzen bringen und dadurch kälter geworden zur Oberfläche aufsteigen.
In der Mitte sieht man eine ins Eis geschmolzene Mulde, in der sich Schmutz gesammelt hat. Da das Sonnenlicht kaum vom Eis absorbiert wird, wohl aber der dunkle Schmutz, hat sich dieser erwärmt und lokal zu einer stärkeren Abschmelzung geführt.

Auf dünnem Eis

Als Kinder freuten wir uns über zugefrorene Pfützen, um darauf zu glitschen bzw. zu schlittern. Pfützen mit weißen Eisschichten waren weniger geeignet, weil diese so dünn waren, dass man meist schon beim vorsichtigen Betreten einbrach.
Aus Ärger darüber und des schönen Geräusches wegen haben wir dann oft auch noch den Rest der Pfütze zertrampelt, sodass unsere Schuhe und manchmal auch noch die Hosen danach völlig verdreckt und damit Ärger zu Haus vorprogrammiert waren. Denn unter dem dünnen Eisbelag war meist noch feuchter Schlamm vorhanden, den der Frost noch nicht erreicht hatte.
Das Eis ist in manchen Pfützebn deshalb so dünn, weil das Wasser schneller versickert als die Eisschicht dicker wird. Schließlich reißt der Kontakt zur Wasseroberfläche. Auf diese Weise entsteht zwischen dem sinkenden Wasserniveau und der Eisschicht ein Hohlraum mit großer Luftfeuchte. Die reichlich vorhandenen Dampfmoleküle docken an der Unterseite der nunmehr frei gewordenen Eisschicht an und bilden eine Reifauflage. Wegen der Lufteinschlüsse des Reifs geht die Transparenz zugunsten eines Milchglasaussehens verloren. Deshalb gehören dünnes Eis und Intransparenz zusammen.
Aber ehrlich gesagt habe ich das Foto nicht nur deshalb gemacht um dies zu dokumentieren. Vielmehr fand ich die Eisschicht in ihrer reichhaltigen Strukturierung und der darin implizit enthaltenen Entstehungsgeschichte einfach naturschön. Leider werden wir solche Ansichten in Zukunft in unseren Breiten wohl immer seltener zu Gesicht bekommen.


Natürliche Weihnachtskügelchen

Auf den ersten Blick käme man wohl kaum darauf, dass diese frisch-grünen Nadeln an einem Tannenbaum sprießen. Schaut man sich jedoch die kleinen Wassertröpfchen genauer an, so findet man dort einen Teil des Zweigs abgebildet.
Diese natürlichen Weihnachtsbaumkügelchen verstehen es so schön, ihre Umgebung zu reflektieren und damit auf eine subtile Weise zu vervielfältigen, ohne dass die Vielfalt eine bloße Kopie wäre.

Ein Kopf aus Reflexionen

Normalerweise sollte ein Kopf reflektieren. Auf diesem Foto ist es umgekehrt: Ein Kopf wird durch Reflexionen hervorgebracht. Daher ist er auch äußerst fragil. Er wird von Reflexen an aufsteigenden und fallenden Wassertropfen eines Springbrunnens hervorgebracht und wird daher gewissermaßen von Tropfen zu Tropfen weitergereicht. Wie das? Auf die fallenden Tropfen wurde mit einem leistungsstarken Projektor das Bild eines Gesichts projiziert und umgehend zu uns dies Betrachtenden weitergegeben.
Das Foto wurde auf der Lichtsicht, einer Projektions-Biennale in Bad Rothenfelde, aufgenommen.
Rechts sieht man den Projektor, in der Mitte befindet sich der nur erahnbare Springbrunnen in einem Teich, von dessen Oberfläche das reflektierte Licht abermals reflektiert wird.

Mit der Nadel zur Hydrophilie gezwungen

Cassey-Baxter-Zustand (oben) und Wenzel-Zustand (unten).

Hier ruhen einige Wassertropfen auf der Oberfläche eines Schilfblatts. Bis auf den in die Länge gezogenen Tropfen im Vordergrund haben alle Tropfen nahezu Kugelform angenommen, was darauf schließen lässt, dass das Blatt weitgehend wasserabweisend (hydrophob) ist. Das liegt daran, dass die Tropfen die eigentliche Blattoberfläche gar nicht berühren, sondern gewissermaßen auf feinen, kaum sichtbaren Härchen sitzen und daher nur ganz geringen Kontakt mir dem Blatt haben (siehe nebenstehende Grafik oben).
Die Physiker sprechen vom Cassey-Baxter-Zustand und Unterschied zum Wenzel-Zustand (siehe nebenstehende Grafik). Im letzteren Fall ist der Tropfen gewissermaßen durchgesackt und hat nun die volle Berührung mit der an sich hydrophilen Blattoberfläche.
Ausgehend von der Idee, einen Tropfen vom Cassey-Baxter- in den Wenzel-Zustand zu überführen, habe ich den Tropfen im Vordergrund im obigen Foto mit einer kleinen Nadel etwas auf das Blatt gedrückt und siehe da: Der Tropfen berührt an dieser Stelle die Blattoberfläche und erfahrt die eigentliche Wasserliebe (Hydrophilie) des Blatts. Aber nur an dieser Stelle, wie man an der Verformung sehen kann. Der an sich Kugelform anstrebende Tropfen ist in diesem Fall zwiegespalten. Mit dem rechten Teil bleibt er auf den Härchen hocken während er mit dem linken Teil gewissermaßen von der hydrphilen Blattoberfläche angezogen wird und den Tropfen auf diese Weise in eine Form bringt, die das Blatt links als anziehend und rechts als abstoßend erfährt – im doppelten Wortsinn.

Geheimnisvolle Gewächse

An dieser schrägen Wand sprießen Gewächse besonderer Art in allen Größen. Die inneren Mycele erinnern an sich ausbreitende Pilze, nur dass hier alles mit einer zarten Haut bedeckt zu sein scheint. Wenn es keine Pflanzen, Pilze oder Tiere sind, die uns hier durch ihre schiere Zahl und Formenvielfalt beeindrucken, fragt sich, worum es sich wirklich handelt.
Diese Gestalten sah ich auf einer mit Wassertropfen besetzten Glasscheibe, in der sich ein kahler Baum spiegelt.

Eine Bank lädt aus

Vor einigen Tagen hat mir Claudia Hinz diese schöne Aufnahme von einer Sitzbank geschickt. Der Anblick stimmt uns sofort auf den (vielleicht) bevorstehenden Winter ein, insbesondere dann wenn man sich auf diese Bank setzt. Ich würde das allerdings nicht empfehlen. Zwar sind die Eisstacheln relativ harmlos, sie schmelzen sofort dahin, sobald ein warmer Hintern die dazu nötige Schmelzwärme liefert. Aber genau das ist das Problem. Denn vermutlich würde die Wärmeabgabe, die zum Schmelzen (also der Überführung der Eiskristalle in Wasser) nötig ist, einen drastischen Eingriff ins Wohlbefinden dieses empfindlichen Körperteils führen, zumal das entstandene Wasser zumindest normale Textilien durchtränkt und auf diese Weise die Wärmeleitung zusätzlich „befeuert“. Wenigstens im Prinzip, wie Physiker oft zu sagen pflegen.
Außerdem – und das scheint mir noch schlimmer zu sein – würde man ein seltenes, naturschönes Gebilde unwiderruflich zerstören und das auch noch mit dem Hintern. Welcher Kunstverständige könnte das schon mit seinem Gewissen vereinbaren.
Aber nun im Ernst: Wie kam es überhaupt zu diesem herausfordernden „Naturkunstwerk“?
Ich stelle es mir folgendermaßen vor: Die auf der Bank vorhandenen Regentropfen sind in der kalten Nacht zunächst gefroren, während sich an trockenen Stellen (Rau)reif bildete. Entscheidend ist dabei ja immer, dass Keime vorhanden sind, an denen der Wasserdampf kondensieren bzw. sublimieren (also direkt in Eis übergehen) kann. Die besten Keime sind normalerweise die Eiskristalle selbst, deswegen wachsen sie ja an den Stellen weiter, an denen der Anfang geglückt ist. Wurde den Wassertropfen bereits durch die eisige Verhärtung das innewohnende Verlangen (letzteres ist kein physikalischer Terminus) genommen, kugelförmig zu werden, so erinnert durch den üppigen Eishaarwuchs inzwischen nicht das geringste mehr daran, dass dieses Verlangen überhaupt einmal bestanden haben könnte. Es wäre also durchaus verständlich, dass den Tropfen deshalb die kristallinen Haare zu Berge stehen. 😉

. 😉

Querblick durch einen Tropfen

Ein großer Tropfen in der Gabelung einer Pflanze mit leicht hydrophober (wasserabweisender) Oberflächenbeschaffenheit zeigt sich hier in einigen seiner optischen Möglichkeiten mit großer Deutlichkeit.
Er ist transparent: Man blickt von der Seite her durch ihn hindurch auf eine kleine Verzweigung. Durch die Brechung des Lichts tritt ein Sprung auf zwischen dem was man durch den Tropfen hindurch sieht und dem direkt gesehenen Teil der Verzweigung.
Er zeigt Reflexionen: partielle Spiegelungen der Umgebung und eine diffuse Reflexion der auf dem rechts verlaufenden Stängel fokussierten Sonnenstrahlen. Diese ist so stark, dass es zu einer Überstrahlung (Irradiation) kommt: Der grüne Stängel erscheint daher weiß.
Außerdem ist das ganze Szenario naturschön – vor allem deshalb habe ich dieses Motiv fotografiert.

Wasserwellen formen rechte Winkel

Die gegen den Strand laufenden Wellen kommen schließlich zur Ruhe, kehren um und versickern teilweise im Sand. Dabei hinterlassen sie stets eine feine Linie aus mittransportierten Teilchen. Wenn die nächste Welle noch weiter ausläuft, rückt diese Linie noch ein Stück weiter landeinwärts. Wenn wegen der eintretenden Ebbe die folgenden Wellen es nicht mehr bis zur letzten Linie schaffen, bleibt diese dann unangetastet liegen. Das ist in diesem Foto der Fall.
Interessant sind die Strukturen, die sich im Laufe der Zeit ergeben, wenn sich mehrere solcher Grenzlinien überschneiden. Bei größerem Sandtransport können sich dann Muster ergeben, die sehr stark an das Panorama eines im Dunst liegenden Gebirges erinnern. Bei klarem Wasser mit nur wenigen transportierten Teilchen ergeben sich oft feine, filigrane Zeichnungen, die Aufschluss über die leichten Variationen der Wellenrichtungen geben und zu immer wieder neuen Mustern führen. Ich habe mich schon immer gefragt, ob dabei nicht auch mal ganz unwahrscheinliche Muster entstehen, z.B. gerade und senkrecht aufeinander stehende Linien. Die Antwort habe ich dabei meist mitgedacht: Theoretisch müssten solche Strukturen auch vorkommen. Aber wer hat die Zeit, so lange beobachtend zu warten?
Da hilft es nur, dass einem der Zufall entgegen kommt. Und das ist der Fall im hier gezeigten Foto. Zwar sind die Geraden nicht perfekt – das gibt es ohnehin nicht in der Natur – aber genau so etwas wie ich es hier zeigen kann, hatte ich mir vorgestellt.

Natürliche Bälle am Meeresstrand

Manche Menschen fühlen sich gestört durch die mehr oder weniger große Ansammlungen von vermeintlichem, stinkenen „Unrat“ an manchen Stränden des Mittelmeeres, von dem in den beiden Fotos Details gezeigt werden. Dabei handelt es sich um natürlicherweise entstandene, angeschwemmte Überreste von Meerespflanzen. Sie bestehen aus braunen, faserigen kurzen Ästchen, an denen oft noch Reste von länglichen Blättern haften, deren ehemaliges frisches Grün meist nur noch erahnt werden kann.
Es handelt sich um abgestorbene Bestandteile des Neptungrases (posidonia oceanica), das in flachen Bereichen auf dem Meeresgrund wächst. Das Gras ist mit einem Erdspross (Rhizom) im Boden verankert. Es wird zuweilen durch unterschiedliche Einwirkungen herausgerissen und landet irgendwann am Strand, wo es sich an bestimmten Stellen ansammelt.
Als ich diese Ansammlungen zum ersten Mal sah, dachte ich sie wären von beflissenen Reinigungskräften des Strands zusammengetragen worden, um danach abtransportiert zu werden. Das haufenweise Auftreten dieser erst auf den zweiten Blick gefälligen Pflanzenreste ist jedoch einem Selbstorganisationvorgang zu verdanken. Nehmen wir an, einige dieser faserigen Erdsprosse (untere Abbildung) haben sich zufällig ineinander verhakt. Für die anbrandenden Wellen ist es dann schon etwas schwieriger sie vor sich herzutreiben als einzelne Exemplare. Die Wahrscheinlichkeit, dass solche Einzelexemplare durch die unermüdlichen Wellenaktivitäten irgendwann einmal zu einer solchen Ansammlung  gelangen, sich dort verhaken und hängenbleiben, wird mit jedem Sproß größer. Denn die Voraussetzungen für eine Verhakung werden umso günstiger, je reichhaltiger die Ankopplungsmöglichkeiten werden. Und diese wachsen mit der Größe der Ansammlung. Fazit: Je größer der Haufen desto schneller das Wachstum. Oder wie schon in der Bibel zu lesen ist: „Wer da hat, dem wird gegeben“ (Matthäus 13:12).
In der Nähe der massenhaften Ansammlung der Erdsprosse, findet man häufig auffällig perfekt geformter Filzkugeln, deren Herkunft nicht unbedingt sofort mit den Sprossen in Verbindung gebracht wird. Trotz der farblichen Ähnlichkeit erinnert die Kugelform mehr an etwas Hergestelltes als an etwas Gewordenes. Und diese Differenz war für mich offenbar so groß, dass meine Hypothesen zunächst in weiter entfernten (im Nachhinein sehr abwegigen) Gefilden festen Grund suchten, als in den ganz in der Nähe befindlichen Seegrashaufen.
Hat man aber erst einmal begriffen, dass hier ein Zusammenhang besteht, kann es ohne fremde Hilfe gelingen, der Entstehung der Filzkugeln auf den Grund zu kommen. Denn ganz ähnlich wie das selbstorganisierte Wachstum durch Verhakungen an Land zu haufenweisen Ansammlungen von Erdsprossen führt, entstehen auf dem Meeresgrund, also dort wo das Neptungras wächst, auf ähnliche Weise diese merkwürdigen Filzbälle (linkes Foto).
Lange bevor die Erdsprosse das Land erreichen, können sie schon unter Wasser zum Spielball der Wellenbewegung werden. Nachdem sie auf diese Weise in einzelne Bestandteile zerfasert werden, kommen sie durch das rhythmische Hin- und Her der Wellen auf dem Boden immer wieder miteinander in Berührung. Dadurch wächst die Wahrscheinlichkeit sich ineinander zu verhaken. Nach einem ähnlichen Prinzip wie beim Wachstum der Haufen kompletter Sprosse am Meeressaum gilt auch hier: Je mehr Teile bereits ineinander verhakt sind, desto größer ist die Wahrscheinlichkeit, dass weitere Teile eingefangen werden. Wegen der durch den Auftrieb verminderten Gewichtskraft der so entstehenden Filzaggregate, bleiben auch größere Exemplare unter Wasser kaum an einer Stelle liegen. Sie werden durch den anhaltenden Wellengang über den Meeresboden geschoben und nach einer gewissen Abrundung gerollt. Herausragenden Fasern werden dabei zunehmend abgewetzt oder ins Innere der entstehenden Kugel gedrückt, die dadurch weiter verfestigt wird. Der Einfang weiterer Pflanzenfasern wird dadurch schließlich immer unwahrscheinlicher. Außerdem nehmen die runden Gebilde aufgewirbelten Sand auf, wodurch sie immer fester und dichter werden. Es findet eine regelrechte Verfilzung statt und die in alle Richtungen gerollten Bälle nehmen eine immer perfektere Kugelform an.
Dass das Rollen von zunächst unförmigen Gegenständen zwangsläufig zu Kugeln führt, kennt man beispielsweise von der Herstellung von Knetgummikugeln: Ein Stück Knete wird zwischen den rotierenden Handflächen unter sanftem Druck gewalzt. Aber auch die kugelförmigen Perlen von Schmuckarmbändern entstehen aus ursprünglich unförmigen Bruchstücken in rotierenden Behältern gleichsam von selbst.
Aus dem abgestorbenen Neptungras kann nach neueren Erkenntnissen Dämmstoff gewonnen werden, das nicht nur eine hohe Wärmedämmung bewirkt, sondern auch ohne weitere Zusätze die gesetzlich vorgeschriebenen Bedingungen des Brandschutzes erfüllt. Ausschlaggebend dafür ist die silikathaltige Faserstruktur der Pflanze. Hinzu kommt, dass das Material frei ist von gesundheitlich bedenklichen Emissionen und Inhaltsstoffen.
Es sollte aber auch darauf hingewiesen werden, dass das Neptungrass ökologisch gesehen für das Mittelmeer überlebenswichtig ist. Es fungiert als eine Art Unterwasserwald, in dem das Wasser gefiltert und geklärt wird, und es bietet zahlreichen Tieren einen schützenden Lebensraum. Als Sauerstoffproduzent kann es u.A. auch als Kinderstube für Fische angesehen werden. Umso Besorgnis erregender ist es, dass das Neptungras bedroht ist. In den letzten 50 Jahren ist es in seinem Bestand aus mehreren Gründen (u.a. Klimaerwärmung) um 34% zurückgegangen. In manchen Regionen des Mittelmeeres werden daher bereits Schutzmaßnahmen ergriffen.
Den Touristen, die das Seegras oft als Verunreinigung ansehen, sei gesagt, dass das Seegras den Strand sogar schützt, indem es den Wellengang schwächt.  Sie sollten daher mehr die ästhetischen Aspekte z.B. in Gestalt der schönen runden Filzbälle in den Blick nehmen.

Die Welt stets tiefer als der Blick*

Wirklichkeit ist ein dynamischer Prozeß und entsteht in jedem Moment neu. Diese Einsicht kann durch die Betrachtung des auf die Zeitspanne der Belichtung der Kamera beschränkten Fotos visualisiert werden.
Allerdings zeigt die Erfahrung, dass dieser schon von Heraklit thematisierte Ablauf nicht mit konstanter Geschwindigkeit vonstatten geht.


* Philippe Jaccottet. Sonnenflecken, Schattenflecken. München 2015, S. 43

Antibubble – das Gegenteil einer Seifenblase

Antiblase: Die Bildfolge zeigt in Abständen von 4/100 Sekunden die Erzeugung einer mit Flüssigkeit gefüllten Lufthülle.

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2022), S. 60 – 61

Wer fragt die These und die Antithese,
ob sie eine Synthese werden wollen?

Stanisław Jerzy Lec (1909–1966)

Ein Tropfen, der in eine Seifenlösung fällt, kann sich beim Eintauchen mit einer dünnen Luftschicht umschließen und gemeinsam mit dieser langsam absinken. Ob das klappt, hängt davon ab, wie genau die Luft beim ersten Kontakt der Flüssigkeiten verdrängt wird.

Wenn man jemanden fragt, was das Gegenteil einer Blase ist, so bekommt man oft zu hören, das sei ein Tropfen. Das klingt zunächst plausibel – ist es aber nicht. Denn eine Blase besteht aus einer Luftkugel mit einer Wasserhülle und befindet sich in der Luft. Das genaue Gegenteil wäre eine Wasserkugel mit einer Lufthülle unter Wasser. Solche »Antiblasen«, gelegentlich nach dem englischen Begriff als Antibubbles bezeichnet, gibt es tatsächlich. Manchmal entstehen sie sogar zufällig, wenn Tropfen in eine Flüssigkeit fallen.

Um nicht auf sein Glück warten zu müssen, kann man Antibubbles gezielt herstellen. Ähnlich wie bei Seifenblasen gelingt das am leichtesten in Wasser, dem man einige Tropfen Spülmittel zugefügt hat. Allerdings ist dabei ein wenig Übung erforderlich. Dazu braucht es einen Trinkhalm, den man ein paar Zentimeter tief in die Lösung (etwa ein Gramm Spülmittel pro Liter Leitungswasser) taucht. Dann verschließt man ihn oben mit einem Finger und hebt ihn einige Millimeter über die Oberfläche. Sobald man die Öffnung freigibt, schießt die Füllung heraus und erzeugt nach etwas Ausprobieren eine etwa einen Zentimeter große Antibubble.

Der Prozess läuft prinzipiell ähnlich ab wie bei einer Seifenblase. Diese entsteht, indem eine Seifenlamelle von einem Luftstrom ausgebeult wird und sich das filigrane, schlauchförmige Gebilde bei einer kritischen Länge zu einer Kugel abschnürt (siehe »Spektrum« Juni 2016, S. 44). Zur Herstellung einer Antibubble reicht der kurze Fall eines Tropfens aus, um die beim Aufprall auf die Flüssigkeitsoberfläche zusammengepresste Luftschicht beim Eintauchen ins Wasser gewissermaßen mitzunehmen. Dabei beult er sie ballonartig aus, bis es ebenfalls zu einer Abschnürung kommt – in diesem Fall des Luftfilms, der die eingetauchte Wasserportion umhüllt.

Um sich den Vorgang im Detail vorzustellen, hilft das Bild einer Wasserschicht, die unter dem Einfluss der Schwerkraft auf die Wasseroberfläche trifft. Zwischen den beiden befindet sich Luft, die dabei zur Seite abgedrängt wird. Das ist kein Problem, so lange sie frei strömen kann. Sobald jedoch ein gewisser Abstand unterschritten wird, bestimmen immer mehr typische Grenzflächenkräfte das Fließverhalten der entweichenden Luft. Sie wird im zunehmend schmalen Spalt zugleich verdrängt und zusammengedrückt. Deswegen können sich die Gasteilchen nicht mehr frei und unabhängig voneinander im Raum bewegen. Vielmehr entsteht das Profil einer laminaren Strömung. Das heißt, die Luftmoleküle, die am Wasser grenzen, bleiben daran haften, während ihre Geschwindigkeit in den (zur Veranschaulichung gedachten) Schichten zur Mitte hin zunimmt. Hinzu kommt, dass mit geringerer Spaltbreite die Zähigkeit der Luft an Einfluss gewinnt. Das äußert sich in einer gesteigerten Reibungskraft, die den Luftstrom verlangsamt. Anschaulich gesprochen verfestigen sich dadurch die Verhältnisse in der Hülle, und sie werden gegenüber störenden Einflüssen stabilisiert.

Aufstieg: Die Luft aus der Hülle strebt nach oben und sammelt sich dort in einer kleinen Aufwölbung. Somit ist die Antibubble nicht mehr ganz kugelförmig. Das Licht wird an der Luftschicht total reflektiert, darum ist nur der mittlere Bereich durchsichtig.

Die Begrenzungen der auf diese Weise gequetschten Luft sind jedoch nicht unbeweglich wie bei festen Wänden, sondern flüssig. Das umliegende Wasser droht also infolge der Reibungskraft mitgeführt zu werden. Der Luftstrom würde dann nicht gebremst, sondern bliebe schnell, dünn und fragil. Das stünde der Entstehung einer Antibubble entgegen.

An der Stelle kommen die mit dem Spülmittel verabreichten Tenside ins Spiel. Das sind langgestreckte Moleküle mit einem dem Wasser zugewandten (hydrophilen) und einem Wasser abweisenden (hydrophoben) Ende. Sie sammeln sich an der Grenzfläche zwischen Gas und Flüssigkeit. Das minimiert die dortige Energie und stabilisiert den Luftstrom: Ein Mitreißen der flüssigen Grenzschicht würde die Konzentration der dort versammelten Tensidmoleküle verringern und die Oberflächenspannung erhöhen. Dagegen wehrt sich das System, indem es eine Gegenströmung antreibt, welche die Tensidkonzentration in der Grenzschicht aufrecht erhält. Die gegeneinander wirkenden Tendenzen versteifen die Wände sozusagen.

Antibubbles haben nicht nur eine physikalisch komplizierte Geburt, obendrein ist ihre Lebensdauer ebenso wie bei Seifenblasen begrenzt. Um die Grenzflächenenergie zu minimieren, streben beiderlei Gebilde eine Kugelgestalt an. Weiterhin wird Energie an die Umgebung abgegeben, indem der Schwerpunkt der Blasen sinkt. Bei einer Seifenblase rinnt die Flüssigkeit in der Haut schwerkraftbedingt herab, bis diese schließlich an der dünnsten Stelle reißt. Auch bei der Antibubble spielt die Gravitation eine Rolle. Hier drückt die innere Wasserkugel mit ihrem Gewicht auf die Lufthülle und presst allmählich Luft hoch. Dadurch wird sie unten irgendwann so schmal, dass sie platzt. Das ganze Schauspiel endet bei der Seifenblase mit umher fliegenden Bruchstücken aus Lauge, die sich zu Tröpfchen zusammenziehen und zu Boden fallen. Bei der Antibubble ist es wieder umgekehrt: Die Fetzen der Lufthülle schrumpfen zu winzigen Bläschen im Wasser, die zu dessen Oberfläche aufsteigen.

Quelle

Suhr, W.: Invertierte Seifenblasen: Antibubbles. Physik in unserer Zeit 2, 2022

Weblink

http://www.youtube.com/watch?v=SeKDd-plkbU

Das Video demonstriert den Herstellungprozess mit einem Trinkhalm und das physikalische Verhalten der Antiblasen.

Tropfen im Dreieck

Es gibt gleichseitige, gleichschenklige, rechtwinklige Dreiecke und solche, die durch Grashalme gebildet werden an denen sich Tautropfen niederlassen. Ein solches besonderes Dreieck haben wir hier (Foto).

Die Tropfen an den Halmen sind gut gerundet. Das spricht dafür, dass die Halme wasserabweisend (hydrophob) sind. Allerdings verfügen sie über kleine wasserliebende (hydrophile) Härchen, an denen sich die Tropfen angehängt haben.

Bildschöne Schmelzwassertümpel im Nordpolarmeer

Beim Flug über das arktische Meereis war ich beeindruckt von der Schönheit der Strukturen im Eis. Was aus dem Flugzeugfenster wie kleine blaue bis zuweilen auch schwarze Tierchen mit langem Ringelschwanz aussah (linkes Foto), waren Süßwassertümpel (rechtes Foto), die in den Sommermonaten durch das Sonnenlicht in die Eisschicht hineingeschmolzen werden. Da die Eisschollen weitgehend aus Süßwasser bestehen, enthalten diese Tümpel ebenfalls Süßwasser.
Doch die Schönheit dieser Seen ist trügerisch. Zwar gibt es diese Tümpel schon lange, aber im Zuge der Klimaerwärmung nimmt ihre Zahl zu und das ist fatal. Denn diese azurblauen bis schwarzen Seen absorbieren mehr Sonnenenergie als die wasserfreien oft schneebedeckten Flächen, die das Licht hauptsächlich reflektieren. Damit wird aber das Abschmelzen des Eises beschleunigt.
Ein wesentlicher Grund für die Zunahme der Tümpel liegt nach Untersuchungen des Alfred-Wegener-Instituts darin, dass nicht nur die Polareisflächen abnehmen, sondern die Eisschichten jünger und dünner sind. Junges Eis ist glatter als das ältere, das durch Schollenbewegungen und Zusammenstöße rau und zerklüftet ist. Und da sich das Schmelzwasser auf der glatten Oberfläche besser verteilen kann, bilden sich Netze aus vielen Tümpeln.

Gut getarnt oder zufällige Ähnlichkeit

Diese Silbermöwe war kaum zu erkennen. Ihr gesprenkeltes Gefieder harmoniert so gut mit dem durch Lichtreflexe an den Wellen erzeugten Muster, dass man schon genau hinschauen muss.
Ich frage mich, ob das Zufall ist oder ob das Gefieder den Reflexen des leicht welligen Wassers angepasst ist.
In einem früheren Beitrag zeigte ich eine Ente, deren Gefieder ein ähnliches Muster aufweist wie die Wellen, die es beim Schwimmen erzeugte. Dort stellt sich dieselbe Frage.

Sonnenauf- und -untergang

Ein mit dunklen Wolken bedeckter Himmel gibt am frühen Morgen den Blick auf die aufgehende Sonne frei. Aber eine Lücke tut sich für kurze Zeit auf und es kommt kurzfristig zu einer Art Lichtexplosion, die dann innerhalb von einigen Minuten ausklingt. Die Sonne verschwindet wieder hinter den Wolken und lässt mich mit schummerigem Tageslicht zurück.

Grenzgänger

Es mag unterschiedliche Motive geben, am Saum des Meeres halb im flachen Wasser halb auf dem festen Land zu gehen und in diesem Fall die Stimmung zu genießen, die durch die tiefstehende und bald untergehende Sonne, das leise Rauschen des Meeres, den Kontakt der nackten Füße mit den Elementen und durch die frischen Gedanken… bei der einen oder dem anderen hervorgerufen wird.
Wir gehen auf der Grenze zwischen Wasser und festem Land, wir sind Grenzgänger – hier sogar im wörtlichen Sinn.
Ich will das hier nicht weiter vertiefen aber vielleicht mit einem Wort Georg Christoph Lichtenbergs (1742 – 1799) ein wenig herausfordern: Auf der Grenze liegen immer die seltsamsten Geschöpfe.

Strukturbildung beim Wasserfall

Alle Gegenstände und Medien, also auch Wasser, tendieren dazu die unter den gegebenen Umständen mögliche tiefste Lage einzunehmen. Dahinter steckt das natürliche Prinzip (2. Hauptsatz der Thermodynamik), soviel Energie wie möglich an die Umgebung abzugeben. Das Ergebnis wäre eine ebene Wasseroberfläche. Aber dazu kommt es im vorliegenden Fall gar nicht erst, weil der Behälter eine Öffnung hat, durch die das Wasser der gleichen Tendenz folgend in das nächst tiefere Becken fällt.
Aber selbst beim Fallen des Wassers gibt es eine Möglichkeit, Energie an die Umgebung abzugeben, indem die Oberfläche, zu deren Ausbildung verhältnismäßig viel Energie nötig ist, verkleinert wird. Doch auch dieser Prozess bleibt im Ansatz stecken, denn inzwischen hat das Wasser ein noch tieferes Becken erreicht.
Aber man kann immerhin erkennen, dass die fallende Schicht sich nach unten hin zusammenzieht mit der Tendenz Zylinderform anzunehmen. (Auch dazu würde es nicht kommen, wie ich in einem früheren Beitrag gezeigt habe).
Der nahezu freie Fall der Wasserschicht wird modifiziert durch Einflüsse der Ränder. Die sich beim schrägen Anstrom auf die Öffnungen aufwölbenden Wasserströme tendieren dazu, aus Trägheit ihre Richtung beizubehalten und führen in der unteren größeren Schale dazu, sich zu überkreuzen bevor sie abermals gestoppt werden und sich im Becken verwirbelnd zur nächsten Öffnung bewegen. Alle diese Vorgänge werden durch individuelle Einflüsse von Unregelmäßigkeiten an den Rändern u.Ä. überlagert und entsprechend modifiziert. Auf diese Weise entstehen naturschöne Wasserstrukturen.

Falsche Reflexionen?

Schaut man sich diese Szenerie genauer an, so könnte man den Eindruck gewinnen, dass bei der Spiegelung der Baumgruppe im Wasser irgendetwas nicht stimmt: Sowohl die hellen Lücken zwischen den Bäumen als auch die Bäume selbst werden auf dem Wasser nicht wie von einem ordentlichen Spiegel erwartet abgebildet; die Spiegelung wird gewissermaßen in die Länge gezogen.
Nun, der Spiegel ist nicht ordentlich. Er besteht aus einer welligen Oberfläche. Und die hat die Eigenschaft, das eintreffende Licht von mehreren Stellen aus in  unsere Augen zu reflektieren. Wir kennen das Phänomen vom Schwert der Sonne, jener Lichtbahn auf dem welligen Wasser bei tiefstehender Sonne oder die Lichtbahnen von Straßenlaternen am Rande eines Gewässers. In diesen Fällen wird die Lichtquelle auch nicht an einer bestimmten Stelle gespiegelt, sondern an vielen jeweils passend geneigten Flanken der Wasserwellen, sodass in der Summe ein ganzer Wasserstreifen zu sehen ist.
Genau das ist auch hier der Fall: Das von den Punkten der Baumgruppe ausgehende Licht wird ebenfalls an zahlreichen Stellen des welligen Wassers gespiegelt und entsprechend in die Länge gezogen.

Rätselfoto des Monats September 2022

Warum erscheinen die Linien verzerrt?


Erklärung des Rätselfotos des Monats August 2022

Frage: Wie entstehen diese Strukturen?

Antwort: Wir blicken auf eine leicht bewegte aber glatte Wasseroberfläche. Sie reflektiert das auftreffende Licht spiegelnd. Da die Aufnahme in einem Jachthafen gemacht wurde, spiegelt sich nicht nur der blaue Himmel, sondern auch das von den Schiffen diffus reflektierte Licht. Weil die Oberfläche unterschiedliche Krümmungen aufweist, wird das Licht in unterschiedliche Richtungen reflektiert, sodass die nachbarschaftliche Ordnung der gespiegelten Originale durcheinander gerät und diese daher nicht mehr zu erkennen sind.
Fasst man die bewegte Wasseroberfläche als Abfolgen von sich ändernden hohl- und wölbspiegelartigen Deformationen auf, so kommt es zu entsprechenden mehr oder weniger starken Verzerrungen der abgebildeten Gegenstände. Je nachdem ob eine gegebene Deformation der Wasseroberfläche groß oder klein ist, befinden sich die gespiegelten Objekte innerhalb oder außerhalb der Brennweiten der flüssigen Hohlspiegel mit der Folge, dass neben den einfachen Verzerrungen auch noch „kopfstehende“ Abbilder auftreten. Damit geht die Kohärenz der gespiegelten Objekte vollends verloren und die Spiegelbilder mutieren kaleidoskopartig zu abstrakten Mustern, die zwischen verschiedenen, aber auf selbstähnliche Weise sich wiederholenden Grundstrukturen changieren.

Ein Glas Wasser im Licht der Sonne

Ein vergessenes Glas Wasser. Die Sonne ist weiter vorgerückt, der Schatten einer Wand rückt auf das Glas vor und macht einige Lichtphänomene sichtbar, die im prallen Sonnenlicht untergehen.
Das Glas und das heißt vor allem das in Glasform gebrachte Wasser wirft trotz seiner Transparenz einen Schatten, weil das auftreffende Licht gebrochen und zu einem Brennfleck gebündelt wird und just den Bereich teilweise wieder aufhellt, dem das Licht gerade entzogen wurde. Lediglich im oberen Bereich, der vom Sonnenlicht ausgeschnitten wurde, bleibt es dunkel. Dorthin verirrt sich kein Licht.
Der heranrückende Schatten einer Wand macht das am Glasrand reflektierte Licht in Form halbkreisförmiger Aufhellungen sichtbar. Ohne Schatten hätte man von diesem Phänomen nichts gesehen. Auch der kurze Lichtstreifen, der vom Glas ein Stück weit in den Schatten läuft, sollte nicht übersehen werden. Aus nächster Nähe betrachtet erkennt man, dass er in Spektralfarben zerlegtes Licht projiziert (siehe Ausschnittsvergrößerung). Es ist das Licht, das im Glas teilweise an der Rückwand reflektiert und bei anschließenden erneuten Auftreffen auf die Glaswand teilweise aus dem Glas heraus gebrochen und dabei in Farben zerlegt wird. Dies entspricht dem Vorgang, der bei einem fallenden Regentropfen zur Entstehung des Regenbogens beitragen würde.

Skulpturen am Strand

Als Kind habe ich Sandburgen am Strand gebaut. Heute wage ich mich an etwas weniger martialische Objekte. Dabei forme ich ganz grob ein Objekt aus der an diesem Strand vorherrschenden Mischung aus hellem und dunklem Sand und überlasse der Flut die Feinarbeit. Damit meine „Kunstwerke“ nicht vorher von Menschen zerstört werden, richte ich es möglichst so ein, dass die Flut ihre Detailarbeit des Nachts ausführt, damit ich morgens als einer der ersten der Ergebnis in Augenschein nehmen und fotografisch sichern kann. Der Anteil des Wassers an der Gestaltung ist in jedem Fall wesentlich kreativer als mein eigener. Meist kommt etwas ganz anderes dabei heraus, als ich mir vorgestellt habe. Diese Skulptur erinnert mich an einen Fisch, was angesichts des wässrigen Kontexts nicht ganz abwegig ist.

Weinende Pflanzen

Mich beeindruckt immer wieder, wenn an einem trockenen Morgen, die Blätter einer Pflanze nichts besseres zu tun haben, als Flüssigkeit an die Umgebung abzugeben. Dieser als Guttation bezeichnete physiologische Vorgang ist eine Art Notfallprogramm der Pflanzen, seinen Säftehaushalt zu regulieren.
Weil ich mich immer wieder von diesen weinenden Pflanzen auch ästhetisch angesprochen fühle, möchte ich hier einmal mehr auf dieses Naturphänomen aufmerksam machen.

Ein physikalischer Fußtritt

Wenn wir unseren Fuß auf festem, feuchten Sand am Meeressaum aufsetzen, machen wir eine auf den ersten Blick merkwürdig erscheinende Entdeckung: In dem Maße, wie wir den Druck auf den Boden steigern, breitet sich ein Hof nahezu trocken gelegten Sandes um den Fuß herum aus. Seine maximale Ausdehnung erreicht er, wenn der Fuß fest aufgesetzt ist. Hebt man ihn wieder an, so sammelt sich Wasser in der Delle, die wir in den Boden gedrückt haben. Sobald die Fußspur verblasst, verschwindet auch das Wasser wieder.
Mit dem Auftreten wird der Sand etwas zu den Seiten weggedrückt und dort aufgewölbt. Da die Sandkörner kleine Brücken bilden, die wie eine Torwölbung die Gewichtskraft nach den Seiten „ableitet“, wirkt diese nicht nur senkrecht nach unten, sondern auch zu den Seiten. Durch die unelastische Wechselwirkung verschieben sich die bis dahin maximal dicht gepackten Sandkörner gegeneinander. Dadurch wächst das Volumen zwischen ihnen und füllt sich mit Wasser aus den benachbarten Bereichen, so dass der „Wasserspiegel“ im darüber lagernden Sand absinkt. Die oberste Sandschicht wird gewissermaßen trocken gelegt. Nur so kann verhindert werden, dass ein Vakuum entsteht. Letztlich wird die dazu erforderliche Energie vom einsinkenden Fuß aufgebracht, der den Widerstand als angenehm empfundene Härte des Bodens zu würdigen weiß.
So weit so gut. Aber steht die im rechten Foto dargestellte Situation nicht im Widerspruch zu diesem Phänomen? Nein. Verglichen mit der dünnen Wasserschicht, aus der der Sand durch den Tritt gewissermaßen herausgehoben wird, ist der Hof wesentlich „trockener“.

Gebrochenes und dadurch gekrümmtes Licht

Wasser ist transparent. Glas ist transparent. Durch beides kann man fast ungestört hindurchblicken. Und dennoch passiert etwas mit dem durchgehenden Licht. Es wird gebrochen und obwohl alles mit rechten (physikalischen) Dingen zugeht, kommt man manchmal nicht umhin, über das Ergebnis zu staunen: Aus einer geraden Linie wird eine geschwungene Linie, wobei der „Schwung“ davon abhängt, von wo und wie man durch das Glas Wasser hindurch auf die Linie blickt.
Aufgefallen ist mir dieses Phänomen in einer geselligen Runde in einer Kneipe. Ich wagte es nicht, meinen Fotoapparat zu zücken und das Bild festzuhalten. Ich stellte es zu Hause so gut wie möglich nach. Und dies ist das Ergebnis (siehe Foto).

Rätselfoto des Monats August 2022

Wie entstehen diese Strukturen?


Erklärung des Rätselfotos des Monats Juli 2022

Frage: Was hält die Tropfen fest?

Antwort: Damit ein Tropfen an einem Blatt haftet, muss er mit diesem eine gemeinsame Grenzfläche ausbilden, womit eine Abweichung von der Kugelgestalt einhergehen würde. Auf dem vorliegenden Foto lässt sich jedoch eine solche Abweichung kaum entdecken.
Dieser scheinbare Widerspruch wird dadurch gelöst, dass die Tropfen keinen direkten Kontakt mit einer flächenhaften Blattoberfläche haben, sondern mit kleinen Härchen, die bei manchen Pflanzen vor allem auf der Unterseite der Blätter vorhanden sind. Diese Härchen sind hydrophil, ziehen Wassertropfen an und werden von diesen umschlossen, ohne dass sie dadurch merklich deformiert würden und daher der Kugelgestalt ziemlich nahe kommen.
Man mag darüber staunen, dass der Tropfen durch eine derart kleine gemeinsame Fläche gehalten wird. Das Erstaunen hängt einmal mehr damit zusammen, dass unsere Anschauung im Bereich mittlerer Dimensionen geprägt wurde. Bei so kleinen Tropfen, mit denen wir es hier zu tun haben, ist die die Schwerkraft bestimmende Masse sehr klein im Vergleich zur Oberfläche, durch die die Adhäsionskraft bestimmt wird (Flächen-Volumenrelation). Das nehmen wir offenbar als Missverhältnis wahr.

Strähnen im Sand

Das Foto zeigt eine Momentaufnahme eines scheinbar bewegten Vorgangs. Aber die wirbelnde Strömung wurde nicht erst durch die Fotografie stillgelegt. Sie war es schon vorher. Man blickt nämlich auf die letzten Spuren des durch anbrandende und am Sandstrand auslaufende Wellen in ein quasigeordnetes Bündel von Sandsträhnen überführten Ensembles.
Die Strähnen sind nämlich schon lange getrocknet, das Wasser ist mit der Ebbe schon weit entfernt und dennoch sieht es so aus, als habe sich das Geschehen in dem aus hellem und dunklem Sand gestalteten Muster verewigt. Wer schafft es das nachzumachen?

Lavendel im Regen

Sie sind kaum wiederzuerkennen, die Lavendelblüten. Sie wirken etwas unnatürlich großzügig gerundet, aber auch ungewöhnlich kräftig in der Farbe. Regentropfen haben die feinen Zwischenräume überbrückt und leuchten nun ihrerseits wie kleine Lampen im typischen Blau-violett des Lavendel. Die Farbe wirkt kräftiger und gesättigter als im Normalfall. Weiterlesen

Natürliche Wasserfarben

Auch die Natur malt zuweilen mit Wasserfarben. Dazu tragen vor allem die grünen und gelben Blätter sowie der durch die Lücken im Blätterdach der Bäume leuchtende blaue Himmel bei, die sich hier im bewegten Wasser eines kleinen Baches spiegeln. Dies ist nur eine Augenblicksaufnahme, die in genau dieser Form wohl kaum wieder zu sehen sein wird, egal wie lange man warten würde. Das heißt nicht, dass sich das fließende Wasser völlig zufällig verhält. Denn die Struktur der Sohle des Baches und die Geschwindigkeit des fließenden Wassers ändern sich nur sehr langsam. Aber das System des fließenden Baches ist chaotisch, will sagen es besitzt viele sogenannte sensitive Punkte, an denen benachbarte Wasserteilchen weit auseinander getrieben werden können, sodass ihre Bahnen nicht einzeln, sondern nur als Ganzes als „berechenbar“ angesehen werden können. Dieses äußert sich auch in den weitgehend ähnlichen Strukturen, die sich in dem Foto zeigen. Sie sind in – sagen wir – einer Minute zwar nicht exakt dieselben aber insofern gleichartig, als man den Eindruck hat, stets das gleiche Bild vor Augen zu haben – einen wohlstrukturierten Ausschnitt aus einem munter dahin plätschernden Bach.

Wirbel allenthalben

Ich bin immer wieder von Strukturen begeistert, die in völlig unterschiedlichen Kontexten vorkommen. In diesem Blog habe ich das Thema schon öfter angesprochen und dokumentiert. Trotzdem möchte ich hier noch einmal zwei Wirbel aus völlig anderen Bereichen und von sehr unterschiedlicher Größe zeigen.
Links ein Wirbel, wie man ihn auf einer Seifenblase sehen kann, wenn die dünne Wasserschicht, aus der der Seifenfilm besteht, leicht angeblasen und dadurch verwirbelt wird.
Rechts haben wir ein größeres Wasserbecken als Blickfang etc. in einer Stadt, in dem man Wasser wie im Abfluss einer Badewanne verschwinden sieht, so als wollte es zu guter Letzt noch einen eleganten Kratzfuß hinlegen.

Farben fließenden Wassers

Wasser ist transparent. Jedenfalls, wenn man kleine Mengen betrachtet: ein Glas Wasser, einen Eimer Wasser, Tropfen… Aber schon bei einer gefüllten Badewanne deutet sich eine meist grünliche Eigenfarbe des Wassers an. Dennoch können auch dünne Wasserschichten mit Farben durchwirkt sein, wie das Foto zeigt. Aber es sind von der Umwelt geliehene Farben. So erscheint die glatte Fläche in der Mitte des Fotos blau, weil hier die Wasseroberfläche so orientiert ist, dass der blaue Himmel spiegelnd in die Augen reflektiert wird. An anderen Stellen blickt man auf den mit grünen Pflanzen marmorierten Grund. Die Farben werden zudem durch das Fließen und der dadurch bedingten endlichen Zeitauflösung bei der Wahrnehmung bzw. Fotoaufnahme modifiziert. Bei günstigen Lichtverhältnissen ist fließendes Wasser auch immer ein Kaleidoskop von Farben.
Die Eigenfarbe reinen Wassers ist übrigens blau, was man allerdings erst bei sehr großen Wasserschichten wahrnehmen kann.

Entpuppung der anderen Art

Lange hatte ich das Spiel des auf- und ablaufenden Wassers am Strand beobachtet. Der schwarze Stein in der Strömung erzeugte zu beiden Seiten eine Wirbelstraße, indem das zunächst zu beiden Seiten abgelenkte Wasser den drohenden Leerraum hinter ihm zu füllen versuchte. Diese Wirbel lösten sich ab und wurden durch neue ersetzt, sodass sich eine ganze Straße ergab. Leider hatte ich keine Kamera dabei, sodass ich die Bilder im Kopf speichern musste.
Stunden später als das Wasser bei Ebbe weiter unten seine Spielchen mit Steinen und anderen Hindernissen trieb, traf ich erneut auf den Stein. Er schien mich diesmal wie der Leibhaftige anzugrinsen, konnte jedoch durch die im Sand gezeichneten Abbilder der Wirbel vom Mittag nicht verbergen, dass er nur ein Stein und nichts als ein Stein war, durch den der Sand teilweise entmischt und gestaltet worden war. Oder hatte ich hier einen der Köpfe des Höllenhundes Kerberos vor Augen?

Wolken – drunter und drüber

Der selektive Spiegel des Wassers hat es nur auf die Wolken abgesehen. Die Bäume, das Segelboot bleiben außen vor. Was geht hier vor?

Photoarchiv