//
Artikel Archiv

Wirbel

Diese Schlagwort ist 19 Beiträgen zugeordnet

Apfelstrudel – essbare Wirbel

So schön, dass ich ihn kaum zu essen wagte…

Schließlich half das Foto, in dem der dem Auge zugedachte Teil dieses Apfelstrudels konserviert werden konnte, das Wagnis einzugehen und den Gaumenschmaus nicht kalt werden zu lassen. Das Strudelige war bei diesem Exemplar allenfalls noch in den Girlanden auf der Vanillesoße zu erkennen. Da die schönsten Strudel, Wirbel, Turbulenzen… ohnehin in der Natur und ihren physikalischen Beschreibungen zu entdecken sind, hat diese Einschränkung dem Geschmack zum Glück nicht geschadet.

Werbung

Wirbel allenthalben

Ich bin immer wieder von Strukturen begeistert, die in völlig unterschiedlichen Kontexten vorkommen. In diesem Blog habe ich das Thema schon öfter angesprochen und dokumentiert. Trotzdem möchte ich hier noch einmal zwei Wirbel aus völlig anderen Bereichen und von sehr unterschiedlicher Größe zeigen.
Links ein Wirbel, wie man ihn auf einer Seifenblase sehen kann, wenn die dünne Wasserschicht, aus der der Seifenfilm besteht, leicht angeblasen und dadurch verwirbelt wird.
Rechts haben wir ein größeres Wasserbecken als Blickfang etc. in einer Stadt, in dem man Wasser wie im Abfluss einer Badewanne verschwinden sieht, so als wollte es zu guter Letzt noch einen eleganten Kratzfuß hinlegen.

Entpuppung der anderen Art

Lange hatte ich das Spiel des auf- und ablaufenden Wassers am Strand beobachtet. Der schwarze Stein in der Strömung erzeugte zu beiden Seiten eine Wirbelstraße, indem das zunächst zu beiden Seiten abgelenkte Wasser den drohenden Leerraum hinter ihm zu füllen versuchte. Diese Wirbel lösten sich ab und wurden durch neue ersetzt, sodass sich eine ganze Straße ergab. Leider hatte ich keine Kamera dabei, sodass ich die Bilder im Kopf speichern musste.
Stunden später als das Wasser bei Ebbe weiter unten seine Spielchen mit Steinen und anderen Hindernissen trieb, traf ich erneut auf den Stein. Er schien mich diesmal wie der Leibhaftige anzugrinsen, konnte jedoch durch die im Sand gezeichneten Abbilder der Wirbel vom Mittag nicht verbergen, dass er nur ein Stein und nichts als ein Stein war, durch den der Sand teilweise entmischt und gestaltet worden war. Oder hatte ich hier einen der Köpfe des Höllenhundes Kerberos vor Augen?

Rätselfoto des Monats Mai 2022

Wie kommt es zu der Miniaturabbildung?


Erklärung des Rätselfotos des Monats April 2022
Frage: Wie kommt es zu solchen winderzeugten Strukturen?

Antwort: Die Häufchen bestehen hauptsächlich aus Weidenkätzchen, die in der letzten Zeit abgefallen sind und sich auf dem Boden zerstreut haben. Sie wurden durch wirbelnde Luftströme zusammengetragen. Diese kommen dadurch zustande, dass heftiger Wind zwischen einer Hauswand und einer hohen Hecke weht. Stellt man sich den Luftstrom aus einzelnen Schichten bestehend vor, so wird die an der Hauswand angrenzende Schicht durch Reibung gebremst und bleibt hinter den angrenzenden Schichten zurück. Die gebremste Schicht bremst ihrerseits die angrenzende Schicht und diese wieder die nächste Schicht. Die schichtweise verminderte Geschwindigkeit führt zu einer Rotation der Luft und damit zu Wirbeln. Etwas Ähnliches gilt für die an den Boden angrenzenden Schichten.
Die von der rotierenden Luft mit einer gewissen reibungsbedingten Verzögerung mitgerissenen Teilchen sammeln sich schließlich im Zentrum der Luftwirbel. Im Prinzip entstehen auf diese Weise auch Windhosen, Tornados und andere Wirbelwinde. Bei letzteren spielen Temperaturgradienten eine wesentliche Rolle.

Rätselfoto des Monats April 2022

Wie kommt es zu solchen winderzeugten Strukturen?

Ich hatte mir für diesen Tag vorgenommen, die vom Wind verwehten Weidenkätzchen zusammenzufegen. Als ich morgens ans Werk gehen wollte, fand ich diesen Anblick vor. Der Wind hatte volle Arbeit getan. Recht so, denn er hatte vorher ja auch die Unordnung erzeugt.


Erklärung des Rätselfotos des Monats März 2022

Frage: Geht hier alles mit rechten Dingen zu?

Antwort: Ja. Aber es ist nicht leicht einzusehen, weil hier die reale und die Spiegelwelt einander „überlagern“. Und es ist noch schwieriger, es zu beschreiben.
Die Situation ist die Folgende: Es handelt sich um die Empfangshalle eines Hotels, die mit dunklen spiegelglatten Steinfliesen ausgelegt ist. Diese spiegeln die Umwelt bei schräger Ansicht nahezu perfekt. Bei steiler Aufsicht wie man sie normalerweise erfährt, wenn man sich auf dem Fliesenboden fortbewegt, merkt man kaum etwas von der irritierenden Spiegelung. Denn je kleiner der Reflexionswinkel, desto geringer ist die Intensität des reflektierten im Vergleich zum absorbierten Licht. Bei großem Reflexionswinkel ist der Anteil der reflektierten Lichtintensität oft so groß, dass die sich dadurch auftuende Spiegelwelt in der  Wahrnehmung dominiert.
Um Ordnung in die auf dem Foto dargestellte Situation zu bringen ist es hilfreich, die goldenen Ringe der Säulen zu betrachten. Dort hat die Säule Kontakt mit dem Fliesenboden. „Darunter“ befinden sich die gespiegelten Säulen. Man sollte versuchen, sie zunächst aus der Betrachtung heraus zu halten. Auf diese Weise kann es dann gelingen, die räumliche Tiefe realistisch einzuschätzen und insbesondere zu erkennen, dass sich die rechte Säule wesentlich weiter im Hintergrund der Szenerie befindet als die Person.           

Viel Wirbel bei der Begrüßung eines Wasserstroms

Diese Wirbel entstehen dadurch, dass sich ein schäumender Wasserstrom in ein größeres Becken ergießt, um dort im Einvernehmen mit dem Wasserbecken zur Ruhe zu kommen. Das geschieht vor allem dadurch, dass die Bewegungsenergie durch Verwirbelungen aufgezehrt wird. Normalerweise merkt man kaum etwas von diesen Vorgängen. Durch die hellen und offenbar sehr haltbaren Blasen des ankommenden Wassers werden jedoch die Spuren der Wasserbewegungen sichtbar und zeigen naturschöne Vorgänge, die man ohne den Schaum nicht zu Gesicht bekommen hätte: Schäume erzeugen Säume, die Bilder gestalten wie Träume.

Das singende Teesieb

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2021), S. 68 – 69

Daß vom reinlichen Metalle
Rein und voll die Stimme schalle

Friedrich Schiller (1759–1805)

Trifft ein Wasserstrahl auf die Lochstruktur eines Edelstahlsiebs, ist manchmal ein Pfeifton zu hören. Er entsteht, wenn Wasserwirbel periodisch auf das Blech zurückwirken und Resonanzschwingungen anregen.

Früher wurde die Teepause von einem Pfeifen eingeläutet, heute wird sie eher damit beendet. Jedenfalls hat der Kessel für die Herdplatte mit seinem schrillen Flöten inzwischen beinahe ausgedient, während Teesiebe aus Edelstahl immer größere Verbreitung finden. Sie sorgen für ein seltsames akustisches Phänomen: Zahlreiche Videos im Internet zeigen die Utensilien, wie sie beim Reinigen im Spülbecken Töne von sich geben.

Die Zufallsentdeckung ist nach kurzem Ausprobieren leicht reproduzierbar, und unter den passenden Umständen offenbaren verschiedene Fabrikate ihre Musikalität. Zum einen muss der Wasserstrahl das Metall mit einer gewissen Geschwindigkeit treffen. Diese nimmt mit der Fallhöhe zu. Bei manchen Sieben reicht der Abstand zwischen Wasserhahn und Spülbecken nicht aus, und das Kunststück gelingt nur im Badezimmer oder mit dem Gartenschlauch. Zum anderen tönt die gelochte Fläche nur dann, wenn sie unter einem bestimmten Winkel getroffen wird. Um den für das Pfeifen optimalen Bereich zu finden, empfiehlt es sich, das Sieb unter dem Wasserstrahl ein wenig zu heben und zu senken und dabei die Neigung zu variieren. Am besten funktioniert es, indem der Strahl den flachen Boden trifft (siehe »Reinigen unter Pfiffen«). Im Lauf einer Reihe von Experimenten konnten mein Kollege Wilfried Suhr und ich sogar ein Sieb an der Mantelseite zum Tönen bringen.

Lochblech aus der Nähe: Ein Wasserstrahl durchdringt das schräg gestellte Sieb teilweise und bildet auf der Rückseite einen Wasserwulst (Pfeil), in dem die Mechanismen zur Tonentstehung ablaufen.

Der relativ kräftige Ton lässt auf eine Schwingung schließen, zu der das auftreffende Wasser das Lochblech anregt. Berührt man das Metall in der Nähe des Strahls, dämpft das den Vorgang, und das Pfeifen verschwindet. An allen übrigen Stellen kann das Sieb hingegen angefasst werden, ohne damit den Ton zu beeinflussen.

Was dabei genau passiert, hat Wilfried Suhr in einer 2020 veröffentlichten Arbeit zusammengefasst. Der auf die Siebfläche prallende Strahl wirkt wie ein mechanischer Schwingungserreger, der zum Beispiel eine Lautsprechermembran vibrieren lässt. Doch das Wasser strömt gleichförmig aus dem Hahn. Woher kommt der Rhythmus, mit dem es das Blech auslenken und in Schwingung versetzen könnte? Es genügt dafür nicht, dass es mit einer ganz bestimmten Geschwindigkeit auf einen passenden Abschnitt des Lochblechs auftrifft. Darüber hinaus muss ihm durch eine geeignete Wechselwirkung eine Frequenz aufgeprägt werden.

Den Taktgeber entdeckt man bei einem genaueren Blick auf die Auftreffstelle. Längs des geneigten Blechs staut sich eine Strömung auf, die teilweise durch die Löcher hindurch auf die andere Seite gelangt (siehe »Lochblech aus der Nähe«). Wenn man die diversen Strömungsbereiche geschickt manipuliert und den Einfluss kleiner Störungen beobachtet, findet man heraus: Die Töne werden von einem länglichen Wasserwulst unterhalb des unmittelbaren Aufpralls hervorgebracht. Dort entsteht eine zeitlich periodische Wasserbewegung – für die wiederum die regelmäßige Lochstruktur notwendige Voraussetzung ist.

Synchronisation: Schematische Darstellung der Wirbelablösung an einer gelochten Wandung. Gekoppelte Wirbelpaare des gleichen Entstehungszyklus sind gleichfarbig markiert.

Die Blechstege zwischen den Löchern spalten nämlich den Wasserstrom auf und erfüllen dabei eine ähnliche Funktion wie gespannte Saiten in einem Luftstrom. Diese lösen jeweils eine Folge paarweise entgegengesetzter Wirbel aus, eine so genannte kármánsche Wirbelstraße. Sie stoßen sich gewissermaßen vom Draht ab, woraufhin er schwingt. Wenn dabei eine seiner Eigenfrequenzen angeregt wird, gerät er in Resonanz und ruft in der umgebenden Luft periodische Verdichtungen und Verdünnungen hervor. Sie werden als Ton wahrnehmbar. So entstehen beispielsweise die Klänge einer Äolsharfe (siehe »Spektrum« November 2020, S. 52).

Ein vergleichbares, nur wesentlich komplexeres Geschehen spielt sich beim Teesieb ab. Im Bereich des Wasserwulstes entstehen hinter den regelmäßigen metallischen Stegen gleich mehrere solcher Wirbelstraßen, die hier aus Wasserwirbeln bestehen. Sie üben in ähnlicher Weise Kräfte auf die angeströmte Fläche des Siebs aus und bringen dessen Eigenschwingungen zur Resonanz. Jedes der vielen benachbarten Wirbelpaare wirkt auf dieselbe Region des Blechs zurück. Zu einer einheitlichen kollektiven Schwingung des ganzen Siebbereichs kommt es nur, wenn die Wirbel sich synchron ablösen und ihre Einzelkräfte gegenseitig verstärken (siehe »Synchronisation«). Passiert das wirklich? Fotografische Untersuchungen des Strömungsfelds an einem vergrößerten und vereinfachten Modell legen nahe, dass die Wirbel angrenzender Löcher tatsächlich aneinander koppeln, während sie sich vom Blech entfernen.

Das Phänomen ist relativ robust gegenüber Störungen. Schwingt das durchströmte Element des Siebs in Resonanz mit der Anregungsfrequenz der Wirbel, so ändert sich daran auch dann nichts, wenn die Auftreffgeschwindigkeit des Wassers in gewissen Grenzen variiert. Das schwingende Blech rastet auf die Eigenschwingung ein. Infolge dieses »Lock-in«-Verhaltens bleibt die Tonhöhe erhalten. Abweichungen zwischen Anregungs- und Resonanzfrequenz senken allerdings die Amplitude. Die verringerte Auslenkung macht sich dann in einer entsprechend abnehmenden Lautstärke bemerkbar.

Bei einem Exemplar eines Teesiebs ist es uns durch Variation der Falldistanz des Wassers sogar gelungen, unterschiedliche Eigenschwingungen des Lochblechs in Resonanz zu versetzen und damit Pfeifgeräusche verschiedener diskreter Frequenzen anzuregen. Mit der Länge des Strahls wuchs auch die jeweilige Tonhöhe. Bei Fallhöhen zwischen zwei Tonstufen und außerhalb des Lock-in-Bereichs verstummte das Teesieb jedoch.

Quelle

Suhr, W.: Pfeiftöne vom Teefilter. Physik und Didaktik in Schule und Hochschule, 2020

Originalpublikation

Wirbel einer ausgeblühten Clematis

Manche Blüten oder das was von ihnen bleibt, wenn sie ausgeblüht haben, überraschen mit einer besonderen Schönheit. In diesem Fall ist es die an einen Wirbel erinnernde Struktur, die ein Gefühl von Bewegung erzeugt.

Impressionen aus der Krummhörn 7 – Wirbel

Nicht jeder Wirbel macht Wirbel. Diese bedrohlich aussehenden Wolkenformation löste sich genauso sang- und klanglos auf wie sie entstanden war. Unsere Eile, ein Dach über den Kopf zu bekommen, war unbegründet. Ein Meteorologe hätte es uns gleich sagen können. Aber da war keiner…

Wirbel in der Dusche

In einer Dusche entsteht oft Nebel, den man aber meist kaum sieht. Erst eine gute Beleuchtung macht ihn sichtbar, indem das Licht am den Tröpfchen gestreut, also diffus in alle Richtungen reflektiert wird. Dies ist auf dem Foto gut zu erkennen. Das Sonnenlicht dringt durch das Gitter des Kellerfensters und prägt den Dampfschwaden gewissermaßen ein entsprechendes Muster auf. Nur die von den Lichtstrahlen getroffenen Wassertröpfchen werden sichtbar, die anderen im Schatten liegenden sieht man nicht.
Durch die Sonnenbeleuchtung wird noch etwas anderes in den Fokus gerückt: Der Nebel ist in Bewegung, was u. A. in einem Wirbel im Zentrum des Fotos sichtbar wird.
Durch das Bewegungsverhalten der Tröpfchen werden wir auf Vorgänge aufmerksam gemacht, die sich in den unsichtbaren Gasen der Luft inklusive des Wasserdampfs abspielen. Denn sie sind es letztlich von denen die Tröpfchen aus ihrer schwerkraftsbedingten Bewegung zum Boden hin abgelenkt werden.
Auf diese Weise erhalten wir zumindest indirekt Kunde von Vorgängen in der uns umgebenden Luft, die wir nicht sehen und abgesehen von stärkeren Luftströmungen auch nicht direkt fühlen können.

Wirbel in der Serviette

Der Wirbel ist also die Vorordnung der Dinge,
ihre Natur im Sinne der Geburt.*

An so etwas dachte ich (nur nicht so schön formuliert), als ich im Restaurant die Serviette in dieser Wirbelform auf dem mir zugewiesenen Platz vorfand und nach dem Genuss des extrem scharfen Hauptgerichts Worte suchte für die Wirkung auf meinen Magen.

 

 

Wirbel im Wasser

 


*Michel Serres. La naissance de la physique dans le texte de Lucrèce. Paris 1977, p. 42 (Im Original: „Le turbillon est donc le pré-ordre des choses, leur nature au sens de naissance„).

 

 

Wenn der Wind die Harfe spielt

H. Joachim Schlichting Spektrum der Wissenschaft 11 (2020), S. 52 – 53

Du, einer luftgebornen Muse
Geheimnisvolles Saitenspiel

Eduard Mörike (1804–1875)

Von Luft umströmte Drähte erzeugen Wirbel, die sich hinter ihnen abwechselnd nach oben und unten hin ablösen. Aus dieser Schwingung werden unter den richtigen Umständen weithin hörbare Töne.

Noch vor wenigen Jahrzehnten wurden viele Haushalte vorwiegend durch oberirdische Telegrafen – und Stromleitungen mit ihren typischen hölzernen Masten mit Nachrichten und elektrischer Energie versorgt. Mit ihnen ist auch ein eindrucksvolles akustisches Phänomen fast ganz verschwunden. Bei stärkerem Wind oder wenn man sein Ohr an einen der Masten hielt, waren heulende, je nach der Stärke des Windes geisterhaft klingende auf- und abschwellende, langgezogene Töne zu hören, wie man sie sonst nicht kennt. Sie werden von den Drähten hervorgerufen, die den Wind in hörbare Schwingung versetzen. Die Masten fungierten als Resonanzkörper und ermöglichten, dass die Töne auch bei mäßigem Wind gehört werden können. Selbst wenn heute manchmal noch in ländlichen Gegenden solche Stromleitungen zu den Häusern führen, funktionieren sie meist nicht. Denn inzwischen werden statt der relativ dünnen Drähte dicke isolierte Leitungen benutzt, die dafür weniger geeignet sind. Bei stärkerem Wind kann man ähnliche Töne allenfalls an Weidenzäunen wahrnehmen, die aus einzelnen gespannten zylindrischen Drähten bestehen.
Schon lange vor der Elektrifizierung haben die Menschen winderzeugte Klänge in der Natur wahrgenommen und mit Hilfe besonderer Musikinstrumente „einzufangen“ versucht. Diese sogenannten Windharfen oder auch Äolsharfen (nach dem Windgott Aeolos benannt) waren bereits im Altertum bekannt. In der Neuzeit wurde die erste Äolsharfe von Athanasius Kircher (1602 – 1680) gebaut; aber erst viel später zur Zeit der Romantik im 19. Jahrhundert erlebte dieses Musikinstrument der Natur eine wahre Blütezeit. Auch heute noch kann man Äolsharfen als Kunstwerke im öffentlichen Raum vorfinden (Beispiele) und sie sind sogar für den eigenen Garten käuflich zu erwerben.
Das physikalische Prinzip der Windharfe ist lange Zeit nicht erkannt worden, obwohl man den Wind ursächlich mit dem Klang in Verbindung brachte. Erst Arbeiten von Vincent Strouhal (1850 – 1922) führten zu einer weitgehend korrekten physikalischen Erklärung. Er stellte fest, dass ein luftumströmter zylindrischer Draht selbst dann Töne erzeugt, wenn er an der Schwingung gar nicht teilnimmt. Die jeweilige Tonhöhe bzw. Frequenz erweist sich als unabhängig von Material, Länge und Spannung des Drahts. Sie ist lediglich proportional zur Windgeschwindigkeit und umgekehrt proportional zum Drahtdurchmesser, wobei die dimensionslose Proportionalitätskonstante für viele zylindrische Objekte einen Wert von ungefähr 0,2 besitzt.
Beispiel: Bei einer mäßigen Brise mit einer Windgeschwindigkeit von 10 m/s würde ein Draht von 5 mm Durchmesser einen Ton mit einer Frequenz  abgeben.
Die Tonentstehung ist darauf zurückzuführen, dass die Luft vor dem im Luftstrom stehenden zylindrischen Draht verdichtet wird und infolge die Reibung der Luft mit den Drahträndern der Druckausgleich mit der verdünnten Luft hinter dem Draht nicht kontinuierlich, sondern ruckweise periodisch erfolgt. Dabei lösen sich abwechselnd an der einen und anderen Seite des Zylindermantels entgegengesetzt rotierende Wirbel, die zu einer sogenannten Kármánschen Wirbelstraße führen (Abbildung). Weil sich die Wirbel anschaulich gesprochen vom Draht abstoßen, üben sie auf diesen eine Reaktionskraft aus, mit einer zur Richtung des Drahts senkrechten Komponente. Diese Kräfte sind zwar im Allgemeinen sehr klein und bringen den Draht kaum in Bewegung. Nähert sich die Frequenz der Wirbelablösung jedoch einer der Eigenfrequenzen des Drahts, so wird dieser zum Mitschwingen angeregt, was als Ton hörbar werden kann.
Als Eigenfrequenz eines eingespannten Drahts bezeichnet man die durch die Masse, die Spannung und die Länge des Drahts festgelegte Frequenz, mit der der Draht schwingt, wenn er zum Beispiel durch Zupfen ausgelenkt wird. Neben der Grundfrequenz, in der sich der Draht als Ganzes zwischen den beiden festen Enden periodisch hin und her bewegt treten im Allgemeinen zusätzlich Oberschwingungen auf, wobei der Draht auch noch in sich schwingt. Die Frequenzen dieser Oberschwingungen sind ganzzahlige Vielfache der Grundschwingung.
Stimmt nun eine der Eigenfrequenzen des schwingenden Drahtes ungefähr mit der Frequenz der Wirbelablösung überein, so gerät er in eine Resonanzschwingung. Dabei schaukelt er sich zu einer so großen Auslenkung auf, dass der durch die Wirbel hervorgerufene leise Ton kräftig verstärkt und gegebenenfalls weithin hörbar wird.
Bemerkenswert ist, dass die Anregungsfrequenz nur in der Nähe der Eigenfrequenz liegen muss um den Draht in Resonanz zu bringen. Denn normalerweise schwingt ein System genau mit der Frequenz, in der es angeregt wird. Im vorliegenden Fall rastet der schwingende Draht gewissermaßen in die Eigenfrequenz ein. In der Fachwissenschaft ist dieses Verhalten als Lock-in-Effekt bekannt, der bei zahlreichen (nicht nur mechanischen) Schwingungssystemen auftritt.
Ohne Lock-in wäre eine Äolsharfe und andere tönende Drähte in der bekannten Form nicht möglich. Da nämlich die Windgeschwindigkeit nie völlig konstant ist und zumindest ein wenig schwankt, würde ansonsten die Frequenz der Wirbelablösung immer wieder von der Eigenfrequenz des Drahtes abweichen. Der tönende Draht bzw. die Äolsharfe wären also die meiste Zeit stumm, was aber bekanntlich nicht der Fall ist. Die Auslenkung des schwingenden Drahts ist innerhalb des Lock-in-Bereichs ist allerdings am größten, wenn der Draht genau mit der Wirbelablösungsfrequenz schwingt und nimmt der Abweichung entsprechend ab. Das ist der Grund für die Schwankungen der Lautstärke der jeweiligen äolischen Töne mit der Windgeschwindigkeit, die der Äolsharfe den typischen anschwellenden und wieder verhallenden Klang verleihen. Bei größeren Variationen der Windgeschwindigkeit werden gegebenenfalls andere Saiten der Äolsharfe zum Klingen gebracht.
Die Äolsharfe ist wie Klavier, Geige und die Harfe ein Saiteninstrument. Während letztere durch planvolles Anschlagen, Streichen und Zupfen zu vorher komponierten Klangfolgen veranlasst werden, überlässt man das Klingen der Äolsharfe weitgehend den unberechenbaren Strömungen des Windes, der mit Hilfe von Luftwirbeln das Schwingungsverhalten der Saiten bestimmt.
Der Anregungsmechanismus der Äolsharfe kann ganz allgemein bei von Luft umströmten Zylindern beobachtet werden kann, lässt sich übrigens mit einem einfachen Experiment demonstrieren. Dazu benötigt man nur einen längeren, schlauchartigen Luftballon (z.B. Länge 1,50 m und Durchmesser 5 cm), den man an einem Ende erfasst und schnell mit dem Arm hin und her oder auf und ab bewegt. Der Ballon gerät dadurch deutlich fühlbar und sichtbar in eine Schwingung senkrecht zur Bewegungsrichtung.
Die brummenden Töne, die zuweilen unter Hochspannungsleitungen zu hören sind, haben einen ganz anderen physikalischen Ursprung. Sie rühren zwar auch von schwingenden Drähten her, werden aber nicht mechanisch durch strömende Luft, sondern durch elektrodynamische Vorgänge in Schwingung versetzt: Jeder stromdurchflossene Leiter ist von einem Magnetfeld umgeben. Die Magnetfelder der bei Hochspannungsleitungen parallel verlaufenden Leiterseile wirken so aufeinander, dass sich gleichartige Felder abstoßen und unterschiedliche Felder anziehen. Dadurch geraten die Seile in einem 50-Hertz-Takt in Schwingung, die auf die Luft übertragen wird und auf diese Weise als typischer Brummton an unser Ohr gelangt –  und sind auch in dieser Hinsicht nicht mit den wohlklingenden Äolharfen zu vergleichen.

Publizierte Version: Wenn der Wind die Harfe spielt.

Dünen halten Abstand

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2010), S. 79 – 80

Wer widersteht dem Strome
seiner Umgebungen?

Johann Wolfgang von Goethe (1749 – 1832)

 Kleine Dünen bewegen sich schneller als große. Dennoch holen die kleinen die großen nicht ein, weil sie durch einen kürzlich entdeckten Strömungsmechanismus auf Abstand gehalten werden. Weiterlesen

Ringelnde Kondensstreifen

H. Joachim Schlichting. Spektrum der Wissenschaft 7 (2020), S. 82 – 83

Am Himmel zeigten sich weiße Schrammen.
Guy Helminger (*1963)

In großer Höhe erzeugen die Abgase eines Flugzeugs oft langgestreckte Bänder aus Eiskristallen. Es scheint, als lägen die Kondensstreifen ruhig in der Luft – tatsächlich sind sie voller Bewegungen. Sie rotieren in der Regel gegensinnig zueinander und zerfallen manchmal in ringartige Elemente. Weiterlesen

Bäume haben Stimmen

Dass diese Aussage stimmt, ist mir einmal mehr in diesem Winter bewusst geworden, in dem sich der Schnee rar machte und der Sturm unüberhörbar wurde. „Hör mal wie der Sturm in den Bäumen heult!“ Man muss wirklich hinhören, um wahrzunehmen, dass der Sturm in den Bäumen anders heult als um die Ecken eines Gebäudes. Ebenso ist es ein Unterschied, ob er durch das nackte Geäst der riesigen Eichen zieht oder die auch im Winter in voller Nadelpracht stehenden Kiefern durchströmt. Glaubt man mangels eines angemesseneren akustischen Vokabulars hier ein dumpfes Klagen zu hören, so wird man dort eher an ein helles Seufzen erinnert. Und im Sommer, wenn die Bäume wieder voll belaubt sind, dominieren eher fröhlichere Töne.
Diese Einschätzungen mögen durch subjektive Stimmungen gefärbt sein, man kann aber objektiv feststellen, dass die größeren Hindernisse insgesamt tiefer klingen als die kleineren. Weiterlesen

Wasserwall in der Spüle

H. Joachim Schlichting. Spektrum der Wissenschaft 10 (2019), S. 58 – 59

Durch eine Bewegung oder einen Sprung
kann Wasser sich erheben
Leonardo da Vinci (1452–1519)

Wenn ein Wasserstrahl auf eine ebene Fläche trifft, bildet sich ringsum eine dünne, kreisförmige Schicht, die sich in etwas Abstand plötzlich zu einem Flüssigkeitswall auftürmt. Weiterlesen

Räteselfoto des Monats März 2016

Rauringe_KondensstreifenEin Flugzeug bläst Rauchringe. Wie kommt es zu diesen Deformationen der Kondensstreifen?

Erklärung des Rätselfotos vom Vormonat: Wellenförmige Eiskante

Ein Tornado rast durch die Halle

Tornado-in-PhaenoAuch wenn dieser Tornado in einem zwar überdimensionalen Glaszylinder gebändigt erscheint und zudem aus einem Wasserstrudel besteht, sieht er aus einer bestimmten Position betrachtet mit leicht zugekniffenen Auge ganz schön realistisch aus. Wer ihn aus nächster Nähe sehen will, muss sich ins Science Center Phaeno in Wolfsburg begeben. Da gibt es weitere erstaunliche und bewundernswerte Phänomene und Phänobjekte zu erleben.

Die Höllenwindsbraut, welche niemals ruht,
verschont mit ihrer Wucht die Geister nimmer
und stößt und wirbelt sie herum voll Wut

Dante Alighieri (1265 – 1321)

 

Fährtensuche am Himmel

Kondensstreifen_DruckSchlichting, H. Joachim. In: Spektrum der Wissenschaft 41/4 (2010), S.32

Von Kondensstreifen, Nebelfäden und Wirbelschleppen: warum nicht nur heiße Abgase kalte Spuren hinterlassen.

http://www.spektrum.de/alias/schlichting/faehrtensucheam-himmel/1023398

PDF beim Autor erhältlich (schlichting@uni-muenster.de)

 

Photoarchiv