//
Artikel Archiv

Farbe

Diese Schlagwort ist 187 Beiträgen zugeordnet

Eingebildetes Rot

Hier wurde ein grünes Trinkglas mit einem brennenden Teelicht vor eine weiße Wand gestellt. Und siehe da, man sieht etwas, was gar nicht vorhanden sein kann – der rötlich erscheinende Bereich an der Wand. Ausgerechnet dort, wo das ungefilterte weiße Kerzenlicht auf die Wand trifft, tritt eine Farbe auf, die objektiv gar nicht vorhanden ist.
In der Tat erliegen wir hier einer veritablen optischen Täuschung. Davon kann man sich überzeugen, wenn man den vermeintlich roten Bereich durch eine Röhre betrachtet und damit den übrigen visuellen Kontext ausschaltet. Dann sieht man die Wand wie sie ist – weiß vom weißen Kerzenlicht.
Schuld an dieser Täuschung ist die chromatische Adaption, die anschaulich als die Tendenz unserer Augen bezeichnet werden kann, die überwiegende Farbe in einem Raum als weiß zu sehen. In einer neuen Lichtsituation – wie hier durch den höheren Grünanteil – wird die Empfindlichkeit der grünes Licht erfassenden Zapfen unserer Augen im Verhältnis zu den anderen Farbanteilen reduziert. Die von grünem Licht beleuchtete Wand wird daher als weniger grün angesehen als sie „in Wirklichkeit“ ist. Da aber auch die Grünanteile der – objektiv gesehen – weißen Wand vermindert werden, dominiert die Komplementärfarbe von Grün, so dass die Wand einen Rotschimmer aufweist.
Dass auch die Kamera dieser Täuschung unterliegt, wird oft mit Verweis auf die Objektivität der Fotografie angezweifelt. Doch die Kamera ist im Automatikmodus gerade so ausgelegt, dass durch einen sogenannten Weißabgleich dafür gesorgt wird, die Dinge auf dem Foto möglichst genau so aussehen zu lassen, wie man sie mit eigenen Augen sieht.
Wer dieses Freihandexperiment selbst ausprobieren möchte, muss nicht unbedingt eine grünes Glas nehmen. Gläser mit anderen Farben funktionieren genauso gut. Allerdings sieht man dann natürlich andere Komplementärfarben. Die Gläser müssen allerdings gut durchgefärbt sein, damit das Phänomen eindrucksvoll in Erscheinung tritt.

Werbung

Gerade schneidet Kreis

Beim Blick aus dem Fenster des Zuges in die verregnete abendliche Dämmerung baut sich ein imposanter Regenbogen auf. Er wird durch die Spiegelung der Leuchtstoffbeleuchtung des Zuges geschnitten und gibt mit der unvermeidlichen Überlagerung durch weiteres Störlicht aus dem beleuchteten Innenraum ein bemerkenswertes Bild ab. Ohne diese Erklärung hätte das Bild wohl auch als (mehr oder weniger gelungenes) Gemälde durchgehen können.

Sonnentaler zum 3.Advent

Gedichte sind gemalte Fensterscheiben!
Sieht man vom Markt in die Kirche hinein,
Da ist alles dunkel und düster;
Und so sieht’s auch der Herr Philister:
Der mag denn wohl verdrießlich sein
Und lebenslang verdrießlich bleiben.

Kommt aber nur einmal herein,
Begrüßt die heilige Kapelle;
Da ist’s auf einmal farbig helle,
Geschicht und Zierat glänzt in Schnelle,
Bedeutend wirkt ein edler Schein;
Dies wird euch Kindern Gottes taugen,
Erbaut euch und ergetzt die Augen!

Johann Wolfgang von Goethe (1749 – 1832)

Soviel zur Schönheit von Licht und Farbe, die durch Kirchenfenster verbreitet werden. Johannes Kepler (1571 – 1630) fielen die Löcher in den Kirchenfenstern auf, durch die Sonnentaler auf dem Kirchenboden oder der gegenüberliegenden Wand entworfen wurden. Zu seiner Zeit war das Phänomen noch nicht verstanden. Kepler war der erste, der eine auch heute noch gültige Erklärung publizierte.

„Dass der Sonnenstrahl, der durch irgendeine Spalte dringt, in Form eines Kreises auf die gegenüberliegende Fläche auffällt, ist eine allen geläufige Tatsache. Dies erblickt man unter rissigen Dächern, in Kirchen mit durchlöcherten Fensterscheiben und ebenso unter jedem Baume. Von der wunderbaren Erscheinung dieser Sache angezogen, haben sich die Alten um die Erforschung der Ursachen Mühe gegeben. Aber ich habe bis heute keinen gefunden, der die richtige Erklärung gefunden hätte“ (Johannes Kepler. Grundlagen der geometrischen Optik. Leipzig 1922, S. 13).

Heute haben die Kirchenfenster nur selten Löcher. Aber auch ohne Löcher entdeckt man schöne, farbenprächtige Sonnentaler. Denn jedes Element eines beliebig geformten Segments der Kirchenfenstermosaike stellt eine Öffnung dar, durch die in hinreichender Entfernung Abbilder der Sonne projiziert werden. Die obige Abbildung ist die Projektion des seltenen Falls eines Kirchenfensters mit zwei fehlenden Glaselementen. Diese rufen weiße Sonnentaler hervor. Alle farbig verglasten anderen Elemente erzeugen schöne Farbkreise.

Herbstblatt – eine letzte Grazie

Ein einsames Blatt sieht seiner Vermoderung entgegen. Eine ungewöhnliche naturschöne Kolloration veredelt mit zahlreichen leuchtenden Perlen verleiht dem Blatt so etwas wie eine letzte Grazie. Vielleicht bin ich der einzige und letzte gewesen, der dies zur Kenntnis genommen hat.

Rätselfoto des Monats Dezember 2022

Warum werden die Blasen nach oben hin größer?


Erklärung des Rätselfotos des Monats November 2022

Frage: Woher kommen die Farben in dem Plastikbehälter?

Antwort: Die Ursache für diese Farbenpracht ist der 1844 von Wilhelm Karl Haidinger entdeckte Effekt, dass das Himmelslicht vor allem aus einer senkrecht zur Sonnenstrahlrichtung orientierten Region teilweise polarisiert ist (Physik in unserer Zeit 2009,40 (4), S. 211). Zum anderen hat der transparente Plastikbehälter die optische Besonderheit doppelbrechend zu sein. Er erlangt diese Eigenschaft allerdings erst durch die Spannung die dem Material bei der Herstellung des Behälters aufgeprägt wurde.

Doppelbrechend heißt, dass das durch ihn hindurchgehende Himmelslicht in zwei leicht unterschiedliche Richtungen gebrochen wird, so dass es in zwei Teilstrahlen zerfällt (Physik in unserer Zeit 2009, 40 (5), S. 262). Diese unterscheiden sich in ihrer Ausbreitungsgeschwindigkeit. Infolgedessen entsteht zwischen beiden Teilstrahlen eine unter anderem von der Wellenlänge abhängige Phasendifferenz. Sie macht sich in einer entsprechenden Drehung der Polarisationsebene bemerkbar, wenn sich die Teilstrahlen des Lichts beim Austritt aus der dünnen Plastikschicht überlagern.

Tritt dieses Licht dann durch das Polarisationsfilter der Sonnenbrille oder eines Fotoapparats, so werden den unterschiedlichen Drehungen der Polarisationsebene entsprechend die verschiedenen Wellenlängen nur mehr oder weniger gut durchgelassen. Die auf diese Weise veränderten Intensitäten der einzelnen Wellenlängen des ehemals weißen Lichts erscheinen jetzt farbig.

Hier treten die Farben allerdings auch ohne Polarisationsfilter auf. Das liegt daran, dass das teilweise polarisierte Himmellicht auf der Wasserschicht reflektiert wird. Blickt man unter einem bestimmten Winkel, dem sogenannten Brewster-Winkel auf die Wasseroberfläche, so sieht man hauptsächlich die senkrecht zur Einfallsebene reflektierten polarisierten Anteile. Das Licht ist also linear polarisiert wie beim Durchgang durch den Filter.

Tee und Licht

Ich habe fast gleichzeitig eine gläserne Teetasse und eine Taschenlampe geschenkt bekommen. Und als die beiden in der nächsten Teepause zum ersten Mal aufeinandertrafen, gab es Tee und Licht (Teelicht ist leider schon als Begriff besetzt und weckt nur falsche Assoziationen).

Teepause

In der Pause, während ich

vor der Flamme wartete,
fiel mir plötzlich ein,

etwas Endgültigem zu entraten;
das Wasser begann gerade

zu kochen, der Kessel heult
gleichmäßig wie eine Siren.

Aber als ich den Tee aufgoß,
waren schon die Möglichkeiten,

ungeheuer, wieder vergessen;
im quirlenden Dampf verfing

sich mein Blick, bis er verschwand,
und ich erkannte noch, wie präzis

der Sand durch die Enge rann.
*



* Henning Ziebritzki (*1961)


Der Vorhang fällt

Den ganzen Tag über haben die Flugzeuge den Himmel mit ihren Kondensstreifen vollgekritzelt. Zum Abend hin gab es dann ein himmlisches Einsehen. Auf breiter Front schob sich ein Wolkenteppich wie der Vorhang im Theater vor die Parade der hybriden (halb Technik, halb Natur) Geraden und beendete das Schauspiel.
Die Sonne hatte sich bereits so weit dem Horizont genähert, dass die relativ niedrigen Wolken schon ihre Sonnenuntergangsgewänder angezogen hatten. Einige Zeit später werdem sich auch die Kondensstreifen verfärben, bevor sie hinter der nunmehr bereits schwarzen Wolkenfront verschwinden.

Verschiedenfarbige Schatten

Ich gebe zu, dass das Foto nicht besonders originell ist, auch wenn die Kerze etwas schief auf dem Ständer steht. Außerdem brennt sie gerade nicht. Aber darauf kommt es mir auch gar nicht an. Jeder andere Gegenstand wäre für das, was ich zeigen möchte, genauso geeignet. Die Kerze nebst Halter wird durch zwei verschiedenfarbige Schatten auf der Raufasertapete abgebildet.
Der eine Schatten ist eher bläulich, der andere gelblich getönt. Die Ursache sind zwei verschiedene Lichtquellen, die mit etwa gleich großer Intensität aus etwas anderen Richtungen die Kerze beleuchten. Zum einen ist es die Zimmerbeleuchtung, eine Glühlampe mit etwas gelblichem Licht, und zum anderen der blaue Himmel, der den Raum durch ein Fenster beleuchtet. Beide Lichtarten überlagern sich mehr oder weniger gut zu einem weitgehend weiß erscheinenden Mischlicht.
Der bläuliche Schatten entsteht dadurch, dass die Kerze das gelbliche Licht der Glühlampe ausblendet und nur das blaue Himmellicht die Tapete ungestört beleuchten kann. Beim gelblichen Schatten ist es gerade umgekehrt. Das bläuliche Licht wird ausgeblendet und das Lampenlicht kann die Wirkung ihrer gelblichen Farbe voll entfalten.
Einige andere Dinge sind interessant. Die Schatten scheinen sich auf dem dunklen Tisch fortzusetzen, obwohl dieser mit einer grünlichen Marmorplatte an diesen Stellen eigentlich eine Mischfarbe aufweisen sollte. Er tut es nicht, weil es sich gar nicht um Schatten handelt, sondern um Spiegelungen auf der glatten Tischoberfläche.
Auf der weißen Wand sehen wir zum einen einen leicht gelblichen Bereich der von der Glühlampe herrührt, während der von Lampe und Fenster beleuchtete Bereich ein Weiß mit einem leichten Blaueinschlag zeigt. Da die Farben der beiden Schatten genau meiner Erinnerung entsprechen, vertraue ich darauf, dass auch die Wandfarben so gesehen wurden.
Vielleicht wird sich der eine oder die andere die Frage stellen, warum man dem Lampenlicht das Gelb und dem durch das Fenster eindringende Tageslicht ihre gelbliche und bläuliche Farbe nicht auch ohne dieses Szenario ansieht. Ursache dafür sind unsere Augen, die durch physiologische Mechanismen dafür sorgen, dass die überwiegende Farbe jeweils als „weiß“ wahrgenommen wird. (Diesen Effekt habe ich bereits öfter im Blog beschrieben). Deshalb sieht man bei reinem Tageslicht normalerweise keine Spur von Blau und bei reinem Lampenlicht auch kein Gelb. Erst dann, wenn beide Farben gleichzeitig vorhanden sind, gelingt es nicht mehr sie zu trennen. Die Kamera empfindet diese physiologische Besonderheit technisch durch den sogenannten Weißabgleich nach. Das funktioniert aber auch nur, wenn die Situation eindeutig ist und eine Verschiebung des Spektrums in genau eine Richtung erforderlich macht.

Das rote Ordensband ziert sich

Ich muss ehrlich gestehen, dass ich diesen Falter, der sich in mein Zimmer verirrt hatte, sofort an die Luft befördern wollte. Doch als ich mich ihm näherte spreizte er die Flügel und legte ein wunderschönes rotes Unterkleid frei, das mich wegen dieser Naturschönheit begeisterte. Ich hatte ein Rotes Ordensband (Catocala nupta) vor mir. Ich holte den Fotoapparat, um diesen Moment festzuhalten. Doch wie es einem so mit den Momenten ergeht, sie vergehen schneller als man gehen kann. Jedenfalls machte das Rote Ordensband bei meiner Rückkehr seinem Namen keine Ehre mehr. Das farbige Unterkleid war bedeckt. Versuche den Falter dazu zu bringen, die alte Pracht wieder ans Tageslicht zu bringen scheiterten weitgehend. Immerhin gab das Tierchen so viel frei, dass die Fantasie ausreichen sollte, sich vorzustellen, wie schön der Anblick bei völliger Abdeckung sein würde.

Ein bunter Schmutzeffekt

Scheinwerferlicht: Ein Auto erzeugt queteletsche Streifen auf einem verschmutzten Schaufenster.

H. Joachim Schlichting. Spektrum der Wissenschaft 8 (2022) S. 72

In jeder flüchtigen Erscheinung sehe ich Welten,
voll vom Wechselspiel der Regenbogenfarben

Konstantin Balmont (1867–1942)

An einer verstaubten Glasscheibe können sich Lichtwellen überlagern, die in unterschiedlicher Reihenfolge gestreut und reflektiert wurden. Dabei entstehen spektralfarbene Strukturen aus Streifen oder Ringen

Der Versuch, bei geringer Helligkeit durch ein Fenster eines verlassenen Gebäudes hindurch zu fotografieren, brachte eine rätselhafte Erscheinung zu Tage. Die Kamera fokussierte automatisch auf die staubige Scheibe und löste das Blitzlicht aus. Das Bild zeigte daher nicht das Innere des Raums, sondern den Lichtreflex auf dem Glas. Dieser war von einer Reihe bunter Streifen umgeben – ein zufälliger Farbfehler der Kamera? Einige Zeit später erschien beim Parken eines PKWs vor einer Fensterfront das zurückgeworfene Scheinwerferlicht von einem ganz ähnlichen Muster umgeben. Es muss sich also um ein reproduzierbares optisches Phänomen handeln.

Für dessen Entstehung war eine Schmutzschicht auf dem Fenster ausschlaggebend. Denn dort, wo es gereinigt wurde, traten keine Farben auf. Damit schied schon einmal ein Interferenzphänomen aus, das bei Doppelglasscheiben zu beobachten und durch Säubern der Scheiben eher noch deutlicher zu sehen ist (siehe »Spektrum« März 2018, S. 68). Die mysteriöse Beobachtung entpuppt sich vielmehr als »queteletsche Ringe«, benannt nach dem vielseitigen belgischen Wissenschaftler Adolphe Quetelet (1796–1874).

Aus dem Alltag kennt man ganz ähnlich erscheinende spektralfarbige Ringe in Gestalt von so genannten Koronen. Sie umsäumen unter bestimmten Bedingungen Lichtquellen wie die Sonne oder den Mond und stammen von winzigen, in der Luft schwebenden Teilchen wie Wassertröpfchen oder Pollen. Manchmal genügt eine beschlagene Fensterscheibe, um eine hindurch schimmernde Laterne von bunten Kreisen umgeben zu sehen.

Bei solchen Koronaphänomenen sind gleich große Partikel entscheidend, an denen das Licht gestreut wird. Das kann bei den queteletschen Ringen nicht der Fall sein, denn hier haben wir es mit einem zufällig entstandenen Staubbelag aus völlig unterschiedlichen Körnchen zu tun. Außerdem blickt man nicht auf die Lichtquelle selbst, sondern auf deren Spiegelung. Darüber hinaus umrahmen die Farbringe im Allgemeinen nicht den Lichtreflex selbst, sondern sie scheinen um eine außerhalb gelegene Stelle zu kreisen, so als wäre beide Erscheinungen völlig unabhängig voneinander.

Bei näherem Hinsehen hat der monochrome Lichtfleck allerdings durchaus eine ausgezeichnete Stellung: Bei ihm handelt es sich um die nullte Beugungsordnung. Sie liegt bei einer normalen Korona in der Mitte, befindet sich hier aber auf einem der Ringe jenseits des Zentrums. Zu ihren beiden Seiten schließen sich die erste, zweite und weitere Beugungsordnungen in Form bunter Bögen an. Die Farbreihenfolge kehrt sich beidseits der nullten Ordnung um, das heißt von dieser aus gesehen verlaufen die Farben auf den weiteren Streifen immer von Blau nach Rot. Das ist ein charakteristisches Merkmal für queteletsche Ringe. Sie zeigen darüber hinaus die typischen Eigenschaften einer spiegelnden Reflexion. Wenn man sich also quer zu den Bögen bewegt, verschieben sie sich in die jeweils entgegengesetzte Richtung, und bei Annäherung an die Scheibe vergrößern sich die Krümmungsradien.

Wie bei der Entstehung von Koronen sind auch hier winzige Streuteilchen ausschlaggebend. Bei den queteletschen Ringen liegen sie auf einer transparenten Ebene, zum Beispiel einer Glasscheibe. Außerdem ist eine zweite Schicht nötig, die das Licht reflektiert. Das kann die Rückseite der Scheibe sein oder besser noch der Metallüberzug eines Spiegels.

Entstehung der Quetelet-Ringe: Zwei Lichtwellen gehen von einem Punkt einer Lichtquelle aus und treffen auf einen verstaubten Spiegel. Eine von ihnen wird zuerst an einem Staubteilchen gestreut und anschließend an der hinteren Grenzschicht reflektiert. Bei der anderen ist es umgekehrt. Wenn beide sich anschließend im Auge überlagern, kommt es zu farbigen Interferenzerscheinungen.

Zu einer Interferenz kommt es immer dann, wenn zwei Wellen, die von einem Punkt der Lichtquelle ausgehen, in ganz bestimmter Weise mit der verschmutzten Scheibe wechselwirken (siehe »Entstehung der Quetelet-Ringe«). Dabei wird eine Welle an einem Staubkörnchen auf der Vorderseite der Scheibe gestreut und anschließend an der Rückseite reflektiert. Die andere wird umgekehrt zunächst hinten reflektiert und dann vorne an demselben Partikel gestreut. Wegen der unterschiedlichen Reihenfolge von Ablenkung und Spiegelung legen beide geringfügig verschiedene Wege zurück. Wenn sie sich daraufhin im Auge oder auf dem Kamerasensor überlagern, gibt es zwischen ihnen eine Phasenverschiebung. Dieser Gangunterschied sorgt je nach Standort für die Verstärkung und Auslöschung des Lichts.

Blickt man senkrecht auf die Glasfront, während sich beispielsweise der Scheinwerfer oder die Sonne in gerade Linie hinter einem befindet, hat man einen ganz symmetrischen Fall. Alle Staubteilchen, die sich gleich weit vom Fußpunkt der Achse zwischen Lichtquelle und Beobachter befinden, erfüllen dieselbe Bedingung für die Streuung. Dann kommt das nullte Interferenzmaximum mittig in den konzentrisch angeordneten Farbringen zu liegen. Allerdings steht man dabei der Lichtquelle im Weg und verdeckt zumindest einen Teil von ihr. Man wird daher normalerweise seitlich ausweichen und unter einem kleinen Winkel auf die Scheibe blicken. Dadurch verlagert sich das Zentrum des Ringsystems in die entgegengesetzte Richtung, und das Spiegelbild der Strahlungsquelle wandert auf einen der Ringe.

Die queteletschen Ringe lassen sich mit einfachen Mitteln experimentell herstellen. Dazu genügt ein ebener Spiegel, der von kleinen Tröpfchen beschlagen oder mit Talkum bestäubt ist. Platziert man sich mit einer möglichst punktförmigen Lichtquelle – etwa einer Taschenlampe, deren Reflektor entfernt wurde – in einem Abstand von zwei bis drei Meter davor und hält die Lampe an Stirn, so sind um den direkten Reflex im Spiegel herum farbige Streifen erkennbar. Diese sind Ausschnitte von Ringen, deren Zentrum je nach Abstand zwischen Auge und Lampe wandert.*

* Einreichversion des Spektrumartikels: Ein bunter Schmutzeffekt.

Blaue Wolken

Wenn man mit einem Flugzeug über den Wolken fliegt, sehen diese von oben meist weiß aus. Das weiße Sonnenlicht der über den Wolken strahlenden Sonne wird hier gestreut und zwar für alle Wellenlängen gleichermaßen (Mie-Streuung). Es sei denn, die Sonne steht bereits so tief, dass sie nicht mehr von oben, sondern von der Seite oder bereits von schräg unten strahlt. Wie man auf dem Foto sehen kann, ist diese Situation hier eingefangen. Die Wolken werden auf ihrer vom Flugzeug zu sehenden Oberseite nicht mehr vom Sonnenlicht aber wohl vom Licht des blauen Himmels darüber beleuchtet (die blaue Stunde). Sie erscheinen daher – wie auf dem Foto zu sehen ist – blau.

Lichtspiele am Abend

ABEND
Einsam hinterm letzten Haus
geht die rote Sonne schlafen,
und in ernste Schlußoktaven
klingt des Tages Jubel aus.

Lose Lichter haschen spät
noch sich auf den Dächerkanten,
wenn die Nacht schon Diamanten
in die blauen Fernen sät.
*


* Rainer Maria Rilke.

Lavendel im Regen

Sie sind kaum wiederzuerkennen, die Lavendelblüten. Sie wirken etwas unnatürlich großzügig gerundet, aber auch ungewöhnlich kräftig in der Farbe. Regentropfen haben die feinen Zwischenräume überbrückt und leuchten nun ihrerseits wie kleine Lampen im typischen Blau-violett des Lavendel. Die Farbe wirkt kräftiger und gesättigter als im Normalfall. Weiterlesen

Natürliche Wasserfarben

Auch die Natur malt zuweilen mit Wasserfarben. Dazu tragen vor allem die grünen und gelben Blätter sowie der durch die Lücken im Blätterdach der Bäume leuchtende blaue Himmel bei, die sich hier im bewegten Wasser eines kleinen Baches spiegeln. Dies ist nur eine Augenblicksaufnahme, die in genau dieser Form wohl kaum wieder zu sehen sein wird, egal wie lange man warten würde. Das heißt nicht, dass sich das fließende Wasser völlig zufällig verhält. Denn die Struktur der Sohle des Baches und die Geschwindigkeit des fließenden Wassers ändern sich nur sehr langsam. Aber das System des fließenden Baches ist chaotisch, will sagen es besitzt viele sogenannte sensitive Punkte, an denen benachbarte Wasserteilchen weit auseinander getrieben werden können, sodass ihre Bahnen nicht einzeln, sondern nur als Ganzes als „berechenbar“ angesehen werden können. Dieses äußert sich auch in den weitgehend ähnlichen Strukturen, die sich in dem Foto zeigen. Sie sind in – sagen wir – einer Minute zwar nicht exakt dieselben aber insofern gleichartig, als man den Eindruck hat, stets das gleiche Bild vor Augen zu haben – einen wohlstrukturierten Ausschnitt aus einem munter dahin plätschernden Bach.

Farben fließenden Wassers

Wasser ist transparent. Jedenfalls, wenn man kleine Mengen betrachtet: ein Glas Wasser, einen Eimer Wasser, Tropfen… Aber schon bei einer gefüllten Badewanne deutet sich eine meist grünliche Eigenfarbe des Wassers an. Dennoch können auch dünne Wasserschichten mit Farben durchwirkt sein, wie das Foto zeigt. Aber es sind von der Umwelt geliehene Farben. So erscheint die glatte Fläche in der Mitte des Fotos blau, weil hier die Wasseroberfläche so orientiert ist, dass der blaue Himmel spiegelnd in die Augen reflektiert wird. An anderen Stellen blickt man auf den mit grünen Pflanzen marmorierten Grund. Die Farben werden zudem durch das Fließen und der dadurch bedingten endlichen Zeitauflösung bei der Wahrnehmung bzw. Fotoaufnahme modifiziert. Bei günstigen Lichtverhältnissen ist fließendes Wasser auch immer ein Kaleidoskop von Farben.
Die Eigenfarbe reinen Wassers ist übrigens blau, was man allerdings erst bei sehr großen Wasserschichten wahrnehmen kann.

Eine Lektion der Kirschen…

Eine schöne pralle Kirsche ist wie ein Wölbspiegel, wenn man nicht allzu große Ansprüche an die Wiedergabequalität stellt. Mit etwas gutem Willen sieht man zumindest schemenhaft sein eigenes Gesicht gespiegelt (rechte Kirsche auf dem Foto).
Die Oberfläche der Kirsche reflektiert das auftreffende Sonnenlicht sowohl diffus als auch spiegelnd. Aufgrund der diffusen Reflexion, die durch Absorption des weißen Lichts und Emission des roten Anteils zustande kommt, erhält die Kirsche ihre charakteristische Farbe. Ein Teil des auftreffenden Lichts dringt jedoch gar nicht so tief in die Kirsche ein. Es wird an der glatten Oberfläche spiegelnd reflektiert. Auch wenn der Anteil des  spiegelnd reflektieren Lichts so gering ist, dass es die Gegenstände, von denen das Licht ausgeht, nur schwer zu erkennen sind, machen sie den Glanz der Kirsche aus.
Blickt man aus einem Winkelbereich auf die Kirsche, aus dem das Licht der Sonne von ihr spiegelnd ins Auge des Betrachters reflektiert wird, kann das diffus reflektierte rote Licht völlig überstrahlt werden (siehe oberer Teil der linken Kirsche). Es entsteht der kugeligen Form der Kirsche entsprechend ein fast kreisförmiger weißer Fleck dessen Ränder allmählich ins typische Rot der Kirsche übergehen. Aber nicht nur das Rot wird hier ausgelöscht. Selbst der grüne Stängel der linken Kirsche erscheint weiß. Auch unterhalb der linken Kirsche ist ein weißer Fleck auf dem grünen Blatt zu erkennen, der ebenfalls der spiegelnden Überstrahlung zu verdanken ist.
Normalerweise werden die Grenzen zwischen den Bildern verschiedener Objekte auf der Netzhaut deren unterschiedlichen Farb- und Helligkeitseindrücken entsprechend gezogen. Bei sehr hellen Objekten werden die Rezeptoren aber über die Sättigung hinaus angesprochen und dadurch so stark erregt, dass gleich auch noch einige der benachbarten Rezeptoren reagieren. Dadurch entsteht dann der Eindruck, dass es auch an der entsprechenden Stelle des Netzhautbildes noch hell ist, obwohl es „in Wirklichkeit“ nicht der Fall ist. Wie die Abbildungen zeigen, treten ähnliche Überstrahlungen des intensiv belichteten Bereichs auch auf dem Foto auf.
Auf der rechten Kirsche sieht man ebenfalls einige helle Flecken. Sie sind jedoch von geringerer Intensität und haben einen schwach bläulichen Schimmer. Dafür sind Partien des durch die Blätter des Kirschbaumes hindurch leuchtenden blauen Himmels verantwortlich, die gerade so orientiert sind, dass ihr Licht zum Beobachter hin reflektiert wird.
Die Überstrahlung der diffusen Reflexion des roten Kirschenlichts durch die spiegelnde Reflexion darf nicht dahingehend missverstanden werden, dass die diffuse Reflexion unterbunden wird. Sie nimmt ebenfalls mit der Intensität des einfallenden Sonnenlichtes zu. Das kann man zum Beispiel daran erkennen, dass die Kirsche in den Bereichen intensiv rot erscheint, aus denen kein spiegelnd reflektiertes Sonnenlicht kommt.  Die Intensität des diffus reflektierten roten Lichts ist sogar so groß, dass die Kirsche wie eine kleine rote Laterne wirkt. Auf diese Weise werden die in der Nähe der Kirsche befindlichen grünen Blätter nicht nur von der Sonne und dem Himmel, sondern auch von der leuchtenden Kirsche angestrahlt. An einer Stelle sieht man daher das grüne Blatt rot schimmern, weil es zufällig günstig zum Beobachter hin orientiert ist. Würde dieser seinen Blickwinkel ändern, sähe vielleicht eine andere Stelle rot gefärbt aus.
Neben den Farben rot und grün ist auch noch das durch die Lücken zwischen den Blättern hindurchschimmernde Licht des blauen Himmels zu sehen.

Es blüht so grün…

Blumen blühen in den verschiedensten Farben, um zu gefallen und aufzufallen. Nicht unbedingt den Menschen, aber den Bestäubern, Bienen und anderen Insekten. Man findet alle Farben vertreten. Nur grüne Blüten gibt es selten. Das ist verständlich, weil die Blüten aus dem überwiegenden Grün der Pflanzen hervorstechen müssen, um nicht übersehen zu werden. Die wenigen grünen Blüten wirken weniger durch Ihre Farbe als durch Geruch und vermutlich auch durch Farben und andere Merkmale, die wir Menschen gar nicht wahrnehmen. Im vorliegenden Fall dürften Insekten kaum Interesse bekunden – die Blümchen entdeckte ich in einem Kunstmuseum

Himmelsfarben beim Blick nach unten

Diese Luftaufnahme zeigt drei Seen, die alle einen unterschiedlichen Blauton aufweisen. Auf den ersten Blick denkt man vielleicht an eine unterschiedliche Beschaffenheit des Wassers. Aber es scheint eine andere Ursache vorzuliegen. Dafür spricht, dass der Blauton umso dunkler erscheint, je steiler man auf die Wasseroberfläche blickt.
Da zur Farbe von Gewässern auch die Reflexion des Himmellichts beiträgt, sind die unterschiedlichen Farbnuancen eine Folge der unterschiedlichen Himmelsregionen, die in den Seen spiegelnd in unsere Augen reflektiert werden. Der vordere See spiegelt höhere Regionen in der Nähe des Zenits, die bekanntlich ein intensives Blau aufweisen, der mittlere See bietet einen Blick auf tiefere Himmelsregionen, die schon deutlich an Farbsättigung eingebüßt haben und der entfernte See gibt das helle horizontnahe Himmelsblau wieder.

Komplementarität von Blau und Gelb in der Natur

Dieser Anblick bot sich mir gestern bei einem Spaziergang. Die Wirkung dieser komplementären natürlichen Farben im Kontext eines sonnigen Frühlingstages löste eine innere Spannung aus, der ich nicht sogleich auf den Grund kam. Was hat es mit Gelb und Blau auf sich?
Bei Wikipedia konnte ich nachlesen , dass beispielsweise Vincent van Gogh in seinem Bild Kornfeld mit Krähen seine dramatische, ausweglose Situation zum  Ausdruck bringt und Ernst Ludwig Kirchner in seinem Gemälde Frauen auf der Straße die Entfremdung und Oberflächlichkeit des mondänen Großstadtlebens anprangert. Steckt da etwas Verallgemeinerungsfähiges hinter?
Trotzdem oder vielleicht gerade deshalb finde ich die Farbkombination in diesem Foto naturschön.

Ostereier aus Stein

Farbige Reflexe in einer Kirche

Die als Farbfilter wirkenden Elemente von Kirchenfenstern tauchen das Kircheninnere oft in ein stimmungsvolles, von manchen als mystisch empfundenes Licht, das sich zuweilen durch Reflexionen an den Bänken und anderen Gegenständen objektiviert.

Polygonale Sandmuster

Dieses polygonale Muster sah ich in einem dicht am Meer gelegenen hinter einigen Dünen tief gelegenen Sandgebiet. Obwohl es während der Beobachtung (Fotografie) völlig trocken war, vermute ich, dass die Musterung darauf zurückzuführen ist, dass unterhalb des Sandbodens das Grundwasser in geringer Tiefe anzutreffen ist. Und dieses Grundwasser dürfte wegen der Nähe des Meeres salzhaltig sein (Brackwasser). Durch die Verdunstung eines Teil des in Kapillaren zwischen den Sandkörnern aufsteigenden Salzwassers an der Oberfläche des Sandes bleibt gelöstes Salz zurück. Es führt allmählich zu einer Anreicherung des Salzes an der Oberfläche und damit zu einer helleren Färbung. Da ein Teil des Wasser an den Rändern solcher Polygone durch absinkendes Wasser innerhalb der Polygone teilweise kompensiert wird, entsteht ein solches an eine Bénardkonvektion erinnerndes Muster.

Dies ist eine grobe vorläufige Vermutung und muss weiter untersucht werden.

Verdoppelte Dämmerung

Farbenprächtige Dämmerung, bei der die Sonne selbst gar nicht zu sehen ist. Die glatten Oberflächen des im Rhythmus der auflaufenden Wellen feucht gehaltenen Sandstrands spiegeln die Farben in voller Brillanz. Eine Verheißung von Sommer…

Physikalische Erzählung einer Fensterfront

Ein buntes Kaleidoskop von Farben und Formen zeigt sich hier in Gestalt von Fensterscheiben. Obwohl die Fenster dicht beieinanderliegen treten die Reflexe in mehr oder weniger unterschiedlicher Weise auf.
Die Reflexe des 1., 3. und 10. Fensters (von oben links nach unten rechts gezählt) stimmen in ihrer Grundstruktur weitgehend überein. Entsprechendes gilt für das 4., 5., und das 8. Fenster; auch das 2. und 7. Fenster könnte man dazurechnen. Ganz aus dem Rahmen fallen das 6. und das 9. Fenster, deren Scheiben kaum eine Struktur zeigen, dafür aber eine weitgehend einheitliche tief blaue Färbung. Gemeinsam ist allen Fenstern, dass sie dem Reflexionsgesetz gemäß das Licht von den gegenüberliegenden indirekten Lichtquellen reflektieren. Das ist im Falle der beiden blauen Fenster der blaue Himmel. In allen anderen Fällen handelt es sich offenbar um Teile von Gebäuden, die der Fensterfront von der Sonne beschienen gegenüber liegen. Anders als man es in den meisten Fällen gewohnt ist, sind die gespiegelten Ansichten aber dermaßen verzerrt, dass sie so gut wie nicht zu erkennen sind. Man kann nur erahnen, dass in einigen Fällen ebenfalls Fenster der Ausgangspunkt für das Licht sind.
Der Grund für diese Verzerrungen liegt nicht etwa darin, dass es sich um schlecht gefertigte Fenster handelt. Vielmehr erkennt man an ihnen eindeutig, dass wir es mit doppelt verglasten, also modernen Fenstern zu tun haben. Sie sind aufgrund von Luftdruckunterschieden zwischen dem Innenraum der luftdicht verklebten Scheiben und der Außenwelt leicht nach innen oder außen gewölbt und wirken, wie in einem früheren Beitrag ausführlicher dargestellt, ähnlich wie Hohl- und Wölbspiegel. Im vorliegenden Fall dominiert allerdings nur der Reflex einer der beiden Scheiben.
Die Verzerrung und damit die Wölbung der Scheiben ist umso größer, je mehr sich die Stärke des Luftdrucks zwischen dem Innenraum der Doppelglasscheiben zum Zeitpunkt ihrer Herstellung und dem Außendruck bei der fotografischen Aufnahme unterscheidet. Die Ähnlichkeit der Verzerrungen der abgebildeten Scheiben weist darauf hin, dass der gleiche Außendruck geherrscht haben muss, die entsprechenden Scheiben also etwa zur gleichen Zeit hergestellt wurden. Dies gilt vermutlich nicht nur für die Scheiben 4, 5 und 8, sondern auch für die Restlichen. Der Unterschied ist vermutlich dem unterschiedlichen Grad der Strukturiertheit der reflektierten Gebäudeteile zuzuschreiben. Unstrukturierte Teile zeigen auch in der Reflexion keine Struktur, wie insbesondere bei den beiden Scheiben zu erkennen ist, die Ausschnitte des blauen Himmel reflektieren.
Bleibt nur noch die Frage, warum die beiden blauen Fenster aus der Reihe tanzen und offenbar über das gegenüberliegende Gebäude „hinwegschauen“. Wie am dunklen Schattenstreifen am oberen Rand dieser Fenster zu erkennen ist, stehen sie „Kipp“ und stellen daher einen anderen Einfallswinkel für das einfallende Licht dar als es bei den übrigen Fenstern der Fall ist. Die Kippstellung von Fenstern führt auch in anderen Zusammenhängen zu überraschenden Phänomenen (z.B. hier und hier, hier).
Die abgebildete Fensterfront hat also einiges zu „erzählen“ über
– die Art der Fensterverglasung,
– den Luftdruckunterschied zwischen Ort und/oder Zeit der Herstellung und ihres jetzigen Aufenthalts und
– über das Wetter.

Gefrorene Federn

Was hier so federleicht und bunt daherkommt, sind nicht die Federn eines bunten Eisvogels. Vielmehr blickt man auf Eiskristalle, die sich in einer dünnen Schicht ziemlich schnell ausbreiten. Normalerweise ist Eis unbunt zwischen transparent und weiß changierend. In diesem Fall liegt die Eisschicht zwischen zwei Polarisationsfolien. Die vor der Eisschicht platzierte Folie polarisiert das einfallende Licht und die hinter der Eisschicht befindliche Folie analysiert das beim Durchgang durch die Eiskristalle modifizierte Licht. Diese Modifikation (siehe unten) macht sich durch bunte Farben bemerkbar, die gewisse Auskünfte über die innere Struktur der Eiskristalle geben.

Wer es physikalisch etwas genauer wissen will, dem sei gesagt, dass Eis die optische Besonderheit hat, doppelbrechend zu sein: Das durch die Eisscholle hindurchgehende polarisierte Licht wird in zwei leicht unterschiedliche Richtungen gebrochen, so dass es in zwei Teilstrahlen zerfällt. Diese unterscheiden sich in ihrer Ausbreitungsgeschwindigkeit. Infolgedessen entsteht zwischen beiden Teilstrahlen eine unter anderem von der Wellenlänge abhängige Phasendifferenz. Sie macht sich in einer entsprechenden Drehung der Polarisationsebene bemerkbar, wenn sich die Teilstrahlen des Lichts beim Austritt aus dem Eis überlagern. Tritt dieses Licht dann durch ein Polarisationsfilter oder wird es in einem bestimmten Winkel reflektiert, so werden den unterschiedlichen Drehungen der Polarisationsebene entsprechend die verschiedenen Wellenlängen nur mehr oder weniger gut durchgelassen. Die auf diese Weise veränderten Intensitäten der einzelnen Wellenlängen des ehemals weißen Lichts äußern sich in verschiedenen Farben.

Rätselfoto des Monats März 2022

Geht hier alles mit rechten Dingen zu?


Dieses Bild hat ein leeres alt-Attribut; sein Dateiname ist 193_eiszapfen_img_6670rv.jpg.

Erklärung des Rätselfotos des Monats Februar 2022

Frage: Wie kommt es zu den Strukturen im Eiszapfen?

Antwort: Dieses reichlich strukturierte Muster besteht aus Lufteinschlüssen, die sich meist in der Mitte eines Eiszapfens bilden. In Wasser ist unter normalen Bedingungen – und das heißt u.a. bei Kontakt mit der Atmosphäre – stets mehr oder weniger viel Luft gelöst. Die Löslichkeit nimmt mit abnehmender Temperatur zu.
Doch wenn es so kalt wird, dass das Wasser gefriert, nimmt die Löslichkeit plötzlich drastisch ab und die überschüssige Luft wird während der Erstarrung des Wassers abgegeben. Die Eiszapfen frieren von außen nach innen zu, weil sie die bei der Kristallisation freiwerdende Wärme umso besser abgeben können, je näher sie der kalten Außenwelt sind. Wenn die Temperatur sehr niedrig ist und der Kristallisationsvorgang sehr schnell abläuft, kann die beim Erstarren zurückbleibende gelöste Luft nicht schnell genug nach außen abgegeben werden und sie bleibt daher in der Mitte des Zapfens als Luftblasenmuster zurück. Brechung und Reflexion beim Übergang des Lichts zwischen Eis und Luftblasen sorgen dafür, dass die „Luftseele“ trotz der Transparenz von Eis und Luft deutlich sichtbar wird.
Beim langsamen Gefrieren hat die Luft oft Zeit genug, an die Umgebung zu entweichen, sodass manchmal auch Zapfen ohne eingeschlossene Luftblasen entstehen und völlig klar erscheinen.



Schwarzweiß oder farbig – manchmal entscheidet der Blickwinkel

Beim Lesen eines Buches mit Op-Art-Abbildungen war mir irgendwie so, dass etwas Buntes durch das Glas hindurch schimmerte. Um festzustellen, ob es an mir oder am Glas Wein lag, füllte ich es kurzerhand mit Wasser und sah, dass das Glas oder besser die Flüssigkeit die Bilder lieber farbig hatte. Es ist also nicht der tiefe Blick ins Glas, sondern der Blick durch das Glas, der dieses Phänomen ermöglicht.
Schuld daran sind die Übergänge des vom Op-Art-Bild ausgehenden Lichts von Luft zum Glas, von Glas zum Wasser und vom Wasser zum Glas und dann wieder zur Luft, bevor es mein Auge erreicht. Dabei spielt das dünne Glas die geringste Rolle und muss nicht weiter betrachtet werden. Entscheidend ist der Durchgang des Lichts durch den Wasserkeil, wobei es ähnlich wie in einem optischen Prisma gebrochen und damit aus der ursprünglichen Richtung abgelenkt wird. Da die Lichtbrechung von der Wellenlänge des Lichts abhängt und damit für die verschiedenen Farben, aus denen sich das weiße Licht zusammensetzt, unterschiedlich groß ist, laufen die einzelnen Farben gewissermaßen auseinander und werden schließlich getrennt voneinander wahrgenommen. Man sieht also die weißen Teile des schwarzweißen Op-Art-Bildes in mehreren ineinander verschwimmenden Versionen.
Man kann auch künstlerisch tätig werden, indem man den Blick durchs Glas auf unterschiedliche Weise auf Schwarzweißbilder und andere Darstellungen richtet und sich den schönsten Anblick auswählt.

Gott, heißt es, schied die Finsternis vom Licht,
Doch mocht es ihm nicht ganz gelingen,
Denn wenn das Licht in Farben sich erbricht,
Mußt es vorher die Finsternis verschlingen.
*

* Johann Wolfgang von Goethe (1749 – 1832)

Galaktische Nebel in der Wasserpfütze

Was mag das sein, das hier wie ein galaktischer Nebel durch zahlreiche Sterne hindurch gesehen daherkommt? Ich war mir vollkommen sicher, dass ich den Blick nicht nach oben gerichtet und kein Riesenteleskop vor Augen hatte, sondern ohne Hilfsmittel nach unten in eine zugefrorene Wasserpfütze.
Schaut man genauer hin, so erkennt man durch die ansonsten ziemlich glatte Eisschicht hindurch verfaulende Blätter und andere Überbleibsel aus der vergangenen Vegetationszeit. In die Eisschicht integriert zeichnen sich in zarten vor allem Blautönen Strukturen ab, die an Spuren biologischer Aktivität erinnern. Ähnlich wie beim Gefrieren von Wasser die darin enthaltene Luft gewissermaßen ausgeschwitzt wird, sind es hier vermutlich proteinhaltige Bestandteile der verwesenden Biomasse, die sich an der Wasseroberfläche abgesetzt haben und einen äußerst dünnen Belag bilden. Dieser ist offenbar so dünn, dass es aufgrund der Überlagerung des an der vorderen und hinteren Grenzschicht reflektierten Lichts zu ähnlichen Strukturfarben wie bei einer Ölschicht auf einer nassen Straße. Die weißen „Sterne“ sind winzige im Eis eingefrorene Gasblasen, die von innen mit Reif belegt sind.
Wie dem auch sei, es ist auf jeden Fall ein naturschöner Anblick, der zumindest einen Teil seines Geheimnisses bewahrt hat – jedenfalls bis jetzt. Ich habe schon einige Male die Schönheit zugefrorener und zufrierender Pfützen gezeigt. Dort wurden die Strukturen vor allem durch das parallel zum Gefrieren versickernde Wasser hervorgerufen. In diesem Fall zeugt aber die glatte Eisfläche davon, dass der Wasserspiegel während des Gefrierens weitgehend gleich geblieben sein muss. Als Ursache käme eine Versiegelung des Pfützenbodens durch die Sedimentation feinstrukturierter Überreste der verwesenden Biomasse infrage. Meist sind solche Pfützen sehr langweilig und manchmal bei genügender Länge allenfalls zum Glitschen zu gebrauchen. Hier aber finden wir in der verhältnismäßig dicken Eisschicht andere beeindruckende Strukturen.
Das Schöne an der dicken Eisschicht ist außerdem, dass sie nicht so leicht zu zerstören ist. Viele Menschen, auch Erwachsene, genießen eher das akustische Phänomen der klirrend zerbrechenden Eisscheiben als die Wohltat für die Augen.

Ein wenig Farbe ins trübe Grau

Eigentlich sollte dies ein physikalischer Beitrag zu den Farben der Spannungsdoppelbrechung werden. Dazu habe ich im schwach polarisierten Himmelslicht einen Kunststoffbehälter fotografiert. Die Farben fielen jedoch ziemlich flau aus. Ich wollte mit einem Bildbearbeitungsprogramm etwas nachhelfen, um den Effekt deutlicher zu machen und landete bei diesem Bild (siehe Foto), das ich aber ehrlicherweise nicht mehr als reinen physikalischen Effekt verkaufen kann, weil die Farben übertrieben bunt ausfallen. Da sie aber einen schönen Kontrast zum aushäusigen Grau abgeben, bringe ich es hier trotzdem. Auf die natürlichen Polarisationsfarben komme ich dann später zurück, wenn die blühenden Blumen ihre Zuständigkeit für schöne Farben übernommen haben.

Der Winter kündigt sich mit feinen Kristallen an

Jetzt beginnt die Zeit, in der die Herbstfarben allmählich in den Hintergrund treten, auch wenn sie noch keck durch die Kristalle hindurchschimmern, mit denen der aus Schwarzweiß ausgerichtete Winter das Bunte zu überkrusten versucht. Die Eiskristalle haben sich in der klaren kalten Nacht gebildet. Sie streben alle in nachbarschaftlicher Konkurrenz dem Himmel zu, weil es in der Nähe der Blattoberfläche noch zu warm ist, um die Kristallisationswärme loszuwerden. Denn das ist der energetische Preis für den Übergang vom Gas zum Festkörper.
Jeder Kristall startet auf einem Härchen oder einer kleinen Erhöhung auf dem Blatt und wartet auf Wasserdampfmoleküle, die sich den bereits kristallisierten und damit fixierten zugesellen.
Wir sehen hier nicht mehr die Schönheit des Herbstes, sondern des Übergangs zum Winter, der demnächst auch offiziell beginnt. Inoffiziell hält er ja bereits als meteorologischen Winterbeginn seit Monatsanfang in unseren Breiten seinen noch schüchternen Einzug.

Schlitzäugiger Dämon

In Orchideen scheint man manchmal Gesichter zu sehen, in denen bei näherem Hinsehen und mit etwas Fantasie weitere Gesichter zu sehen sind. Vor dem weißen Hintergrund der Blütenblätter kommen die zarten Farben direkt oder durchscheinend besonders eindrucksvoll zum Ausdruck. Und die Schatten verleihen dem Ganzen eine gewisse Tiefe.

Himmelblaue Dünen

Dies liefert uns die Erklärung für ein sehr eigenartiges Phänomen, dem die Maler viel Aufmerksamkeit gewidmet haben, und daß Anlaß einer Denkschrift von Herrn de Buffon gewesen ist, dessen physikalische Ursache jedoch meines Wissens noch niemand angegeben hat; die Schatten nehmen dies Morgens und des Abends eine intensiv blaue Färbung an, und wenn eine Kerze an die Stelle der Sonne tritt und diese noch nicht aufgegangen ist, aber kurz davorsteht, entsteht fast dieselbe Wirkung. Dieses Phänomen wird von der Luftfarbe der Atmosphäre, welche diese Schatten beleuchtet und in der die blauen Strahlen vorherrschen, verursacht: die blauen Strahlen prallen in großen Mengen schräg zurück, während die roten, die sich weiter weg in gerader Linie verlieren, den Schatten nicht modifizieren können, weil sie sich nicht oder weit weniger reflektieren.*

Die eigenartige Wirkung, die von diesem Bild ausgeht, liegt vermutlich darin begründet, dass Dünen und Schatten ziemlich genau in Komplementärfarben erstrahlen. Die Aufnahme erfolgte am frühen Morgen kurz nach Sonnenaufgang.


* Pierre Bouguer. Traité d’optique sur la gradation de la lumiére (1760) zit. in: Michael Baxandal.Löcher im Licht; München 1998; S. 126-127

Leuchtende Blätter im Herbst

Dieser Wald ist an einer Stelle derart hell, dass es im ersten Moment so aussieht, als würde das Blattwerk aus sich heraus leuchten. Es ist aber nur das einfallende Sonnenlicht, das hier von den Blättern bereitwillig wieder abgegeben wird.
Dadurch dass im Herbst viele Bäume ihren Blättern das Blattgrün entziehen, nehmen diese meist die Farbe der zurückbleibenden Farbstoffen an, die bislang vom Blattgrün überdeckt wurden. Dies sind vor allem Carotinoide und Gerbstoffe. Die Carotinoide treten in dem Maße hervor, wie das Blattgrün verschwindet und färben beispielsweise Birkenblätter und Lärchenblatter gelb. Die Gerbstoffe sind für die Braunfärbung von Buchen und Eichen verantwortlich. Bei manchen Bäumen werden aber aber auch Farbstoffe, z.B. die Anthocyane neu gebildet. Sie sollen das Blatt solange vor Schädigungen durch das Sonnenlicht zu schützen, wie die Nährstoffe gesichert werden. Anthocyane rufen die Rotfärbung mancher Bäume, zum Beispiel beim Ahorn oder wilden Wein hervor. Im vorliegenden Fall reflektieren die zurück gebliebenen hellen Farbstoffe mehr Licht als es normalerweise der Fall war..

Sonne, Blüten, Meer…

Kaum zu glauben, dass ich vor zwei Wochen noch diesen Anblick genießen durfte. Inzwischen gewinne ich den Farben unserer Herbsten ähnlich positive Gefühle ab….

Ich stand früher auf als die Sonne

In den letzten Tagen war ich noch vor der Sonne aufgestanden. Und da ich mich am Meer befand, ließ ich mir das Erlebnis der gegenseitigen Begrüßung nicht nehmen. Zugegeben, das ist im Winterhalbjahr leichter als im Sommerhalbjahr, aber der Weg zum Meer war auch noch einzurechnen.
Meistens brauchte die Sonne noch eine Strecke, um durch eine diffuse Horizontbewölkung hindurchzukommen. Je nach deren Dichte gab es dann einige Vorgeplänkel partieller Sichtbarkeit der Sonnenscheibe, bis sie dann mit praller Strahlkraft durchbrach und mich zwang, die Augen zu senken.
Dass die Sonne sich aus der Dunstschicht erhebt, ist auch an ihrer uneinheitlichen Färbung zu erkennen. Im unteren Bereich wird noch so viel Licht von der mit der Höhe sich verflüchtigenden (Warum?) Dunstschicht absorbiert, dass die Lichtintensität unseren Augen noch nichts anhaben kann. Es sind vor allem die langwelligen Anteile Rot und Gelb zu erkennen, die vom weißen Sonnenlicht nach der langen Passage schräg durch die Atmosphäre übrig bleiben. Im oberen Bereich der Sonnenscheibe ist bereits das gleißende Weiß des Sonnenlichts zu sehen ist, das kurze Zeit später die ganze Sonnenscheibe erfüllt.
Wenn man den Sonnenaufgang bewusst auf sich wirken lässt, wird man erstaunt sein, wie schnell die Sonne sich erhebt. Es dauert nur etwas mehr als 2 Minuten bis die Sonne ihren eigenen Durchmesser durchlaufen hat. Dieser Eindruck von Schnelligkeit entsteht vor allem deshalb, weil man den Horizont als Bezugslinie im Blick hat, von dem sich die Sonne entfernt.

Photoarchiv