//
Artikel Archiv

Farbe

Diese Schlagwort ist 179 Beiträgen zugeordnet

Das rote Ordensband ziert sich

Ich muss ehrlich gestehen, dass ich diesen Falter, der sich in mein Zimmer verirrt hatte, sofort an die Luft befördern wollte. Doch als ich mich ihm näherte spreizte er die Flügel und legte ein wunderschönes rotes Unterkleid frei, das mich wegen dieser Naturschönheit begeisterte. Ich hatte ein Rotes Ordensband (Catocala nupta) vor mir. Ich holte den Fotoapparat, um diesen Moment festzuhalten. Doch wie es einem so mit den Momenten ergeht, sie vergehen schneller als man gehen kann. Jedenfalls machte das Rote Ordensband bei meiner Rückkehr seinem Namen keine Ehre mehr. Das farbige Unterkleid war bedeckt. Versuche den Falter dazu zu bringen, die alte Pracht wieder ans Tageslicht zu bringen scheiterten weitgehend. Immerhin gab das Tierchen so viel frei, dass die Fantasie ausreichen sollte, sich vorzustellen, wie schön der Anblick bei völliger Abdeckung sein würde.

Ein bunter Schmutzeffekt

Scheinwerferlicht: Ein Auto erzeugt queteletsche Streifen auf einem verschmutzten Schaufenster.

H. Joachim Schlichting. Spektrum der Wissenschaft 8 (2022) S. 72

In jeder flüchtigen Erscheinung sehe ich Welten,
voll vom Wechselspiel der Regenbogenfarben

Konstantin Balmont (1867–1942)

An einer verstaubten Glasscheibe können sich Lichtwellen überlagern, die in unterschiedlicher Reihenfolge gestreut und reflektiert wurden. Dabei entstehen spektralfarbene Strukturen aus Streifen oder Ringen

Der Versuch, bei geringer Helligkeit durch ein Fenster eines verlassenen Gebäudes hindurch zu fotografieren, brachte eine rätselhafte Erscheinung zu Tage. Die Kamera fokussierte automatisch auf die staubige Scheibe und löste das Blitzlicht aus. Das Bild zeigte daher nicht das Innere des Raums, sondern den Lichtreflex auf dem Glas. Dieser war von einer Reihe bunter Streifen umgeben – ein zufälliger Farbfehler der Kamera? Einige Zeit später erschien beim Parken eines PKWs vor einer Fensterfront das zurückgeworfene Scheinwerferlicht von einem ganz ähnlichen Muster umgeben. Es muss sich also um ein reproduzierbares optisches Phänomen handeln.

Für dessen Entstehung war eine Schmutzschicht auf dem Fenster ausschlaggebend. Denn dort, wo es gereinigt wurde, traten keine Farben auf. Damit schied schon einmal ein Interferenzphänomen aus, das bei Doppelglasscheiben zu beobachten und durch Säubern der Scheiben eher noch deutlicher zu sehen ist (siehe »Spektrum« März 2018, S. 68). Die mysteriöse Beobachtung entpuppt sich vielmehr als »queteletsche Ringe«, benannt nach dem vielseitigen belgischen Wissenschaftler Adolphe Quetelet (1796–1874).

Aus dem Alltag kennt man ganz ähnlich erscheinende spektralfarbige Ringe in Gestalt von so genannten Koronen. Sie umsäumen unter bestimmten Bedingungen Lichtquellen wie die Sonne oder den Mond und stammen von winzigen, in der Luft schwebenden Teilchen wie Wassertröpfchen oder Pollen. Manchmal genügt eine beschlagene Fensterscheibe, um eine hindurch schimmernde Laterne von bunten Kreisen umgeben zu sehen.

Bei solchen Koronaphänomenen sind gleich große Partikel entscheidend, an denen das Licht gestreut wird. Das kann bei den queteletschen Ringen nicht der Fall sein, denn hier haben wir es mit einem zufällig entstandenen Staubbelag aus völlig unterschiedlichen Körnchen zu tun. Außerdem blickt man nicht auf die Lichtquelle selbst, sondern auf deren Spiegelung. Darüber hinaus umrahmen die Farbringe im Allgemeinen nicht den Lichtreflex selbst, sondern sie scheinen um eine außerhalb gelegene Stelle zu kreisen, so als wäre beide Erscheinungen völlig unabhängig voneinander.

Bei näherem Hinsehen hat der monochrome Lichtfleck allerdings durchaus eine ausgezeichnete Stellung: Bei ihm handelt es sich um die nullte Beugungsordnung. Sie liegt bei einer normalen Korona in der Mitte, befindet sich hier aber auf einem der Ringe jenseits des Zentrums. Zu ihren beiden Seiten schließen sich die erste, zweite und weitere Beugungsordnungen in Form bunter Bögen an. Die Farbreihenfolge kehrt sich beidseits der nullten Ordnung um, das heißt von dieser aus gesehen verlaufen die Farben auf den weiteren Streifen immer von Blau nach Rot. Das ist ein charakteristisches Merkmal für queteletsche Ringe. Sie zeigen darüber hinaus die typischen Eigenschaften einer spiegelnden Reflexion. Wenn man sich also quer zu den Bögen bewegt, verschieben sie sich in die jeweils entgegengesetzte Richtung, und bei Annäherung an die Scheibe vergrößern sich die Krümmungsradien.

Wie bei der Entstehung von Koronen sind auch hier winzige Streuteilchen ausschlaggebend. Bei den queteletschen Ringen liegen sie auf einer transparenten Ebene, zum Beispiel einer Glasscheibe. Außerdem ist eine zweite Schicht nötig, die das Licht reflektiert. Das kann die Rückseite der Scheibe sein oder besser noch der Metallüberzug eines Spiegels.

Entstehung der Quetelet-Ringe: Zwei Lichtwellen gehen von einem Punkt einer Lichtquelle aus und treffen auf einen verstaubten Spiegel. Eine von ihnen wird zuerst an einem Staubteilchen gestreut und anschließend an der hinteren Grenzschicht reflektiert. Bei der anderen ist es umgekehrt. Wenn beide sich anschließend im Auge überlagern, kommt es zu farbigen Interferenzerscheinungen.

Zu einer Interferenz kommt es immer dann, wenn zwei Wellen, die von einem Punkt der Lichtquelle ausgehen, in ganz bestimmter Weise mit der verschmutzten Scheibe wechselwirken (siehe »Entstehung der Quetelet-Ringe«). Dabei wird eine Welle an einem Staubkörnchen auf der Vorderseite der Scheibe gestreut und anschließend an der Rückseite reflektiert. Die andere wird umgekehrt zunächst hinten reflektiert und dann vorne an demselben Partikel gestreut. Wegen der unterschiedlichen Reihenfolge von Ablenkung und Spiegelung legen beide geringfügig verschiedene Wege zurück. Wenn sie sich daraufhin im Auge oder auf dem Kamerasensor überlagern, gibt es zwischen ihnen eine Phasenverschiebung. Dieser Gangunterschied sorgt je nach Standort für die Verstärkung und Auslöschung des Lichts.

Blickt man senkrecht auf die Glasfront, während sich beispielsweise der Scheinwerfer oder die Sonne in gerade Linie hinter einem befindet, hat man einen ganz symmetrischen Fall. Alle Staubteilchen, die sich gleich weit vom Fußpunkt der Achse zwischen Lichtquelle und Beobachter befinden, erfüllen dieselbe Bedingung für die Streuung. Dann kommt das nullte Interferenzmaximum mittig in den konzentrisch angeordneten Farbringen zu liegen. Allerdings steht man dabei der Lichtquelle im Weg und verdeckt zumindest einen Teil von ihr. Man wird daher normalerweise seitlich ausweichen und unter einem kleinen Winkel auf die Scheibe blicken. Dadurch verlagert sich das Zentrum des Ringsystems in die entgegengesetzte Richtung, und das Spiegelbild der Strahlungsquelle wandert auf einen der Ringe.

Die queteletschen Ringe lassen sich mit einfachen Mitteln experimentell herstellen. Dazu genügt ein ebener Spiegel, der von kleinen Tröpfchen beschlagen oder mit Talkum bestäubt ist. Platziert man sich mit einer möglichst punktförmigen Lichtquelle – etwa einer Taschenlampe, deren Reflektor entfernt wurde – in einem Abstand von zwei bis drei Meter davor und hält die Lampe an Stirn, so sind um den direkten Reflex im Spiegel herum farbige Streifen erkennbar. Diese sind Ausschnitte von Ringen, deren Zentrum je nach Abstand zwischen Auge und Lampe wandert.*

* Einreichversion des Spektrumartikels: Ein bunter Schmutzeffekt.

Blaue Wolken

Wenn man mit einem Flugzeug über den Wolken fliegt, sehen diese von oben meist weiß aus. Das weiße Sonnenlicht der über den Wolken strahlenden Sonne wird hier gestreut und zwar für alle Wellenlängen gleichermaßen (Mie-Streuung). Es sei denn, die Sonne steht bereits so tief, dass sie nicht mehr von oben, sondern von der Seite oder bereits von schräg unten strahlt. Wie man auf dem Foto sehen kann, ist diese Situation hier eingefangen. Die Wolken werden auf ihrer vom Flugzeug zu sehenden Oberseite nicht mehr vom Sonnenlicht aber wohl vom Licht des blauen Himmels darüber beleuchtet (die blaue Stunde). Sie erscheinen daher – wie auf dem Foto zu sehen ist – blau.

Lichtspiele am Abend

ABEND
Einsam hinterm letzten Haus
geht die rote Sonne schlafen,
und in ernste Schlußoktaven
klingt des Tages Jubel aus.

Lose Lichter haschen spät
noch sich auf den Dächerkanten,
wenn die Nacht schon Diamanten
in die blauen Fernen sät.
*


* Rainer Maria Rilke.

Lavendel im Regen

Sie sind kaum wiederzuerkennen, die Lavendelblüten. Sie wirken etwas unnatürlich großzügig gerundet, aber auch ungewöhnlich kräftig in der Farbe. Regentropfen haben die feinen Zwischenräume überbrückt und leuchten nun ihrerseits wie kleine Lampen im typischen Blau-violett des Lavendel. Die Farbe wirkt kräftiger und gesättigter als im Normalfall. Weiterlesen

Natürliche Wasserfarben

Auch die Natur malt zuweilen mit Wasserfarben. Dazu tragen vor allem die grünen und gelben Blätter sowie der durch die Lücken im Blätterdach der Bäume leuchtende blaue Himmel bei, die sich hier im bewegten Wasser eines kleinen Baches spiegeln. Dies ist nur eine Augenblicksaufnahme, die in genau dieser Form wohl kaum wieder zu sehen sein wird, egal wie lange man warten würde. Das heißt nicht, dass sich das fließende Wasser völlig zufällig verhält. Denn die Struktur der Sohle des Baches und die Geschwindigkeit des fließenden Wassers ändern sich nur sehr langsam. Aber das System des fließenden Baches ist chaotisch, will sagen es besitzt viele sogenannte sensitive Punkte, an denen benachbarte Wasserteilchen weit auseinander getrieben werden können, sodass ihre Bahnen nicht einzeln, sondern nur als Ganzes als „berechenbar“ angesehen werden können. Dieses äußert sich auch in den weitgehend ähnlichen Strukturen, die sich in dem Foto zeigen. Sie sind in – sagen wir – einer Minute zwar nicht exakt dieselben aber insofern gleichartig, als man den Eindruck hat, stets das gleiche Bild vor Augen zu haben – einen wohlstrukturierten Ausschnitt aus einem munter dahin plätschernden Bach.

Farben fließenden Wassers

Wasser ist transparent. Jedenfalls, wenn man kleine Mengen betrachtet: ein Glas Wasser, einen Eimer Wasser, Tropfen… Aber schon bei einer gefüllten Badewanne deutet sich eine meist grünliche Eigenfarbe des Wassers an. Dennoch können auch dünne Wasserschichten mit Farben durchwirkt sein, wie das Foto zeigt. Aber es sind von der Umwelt geliehene Farben. So erscheint die glatte Fläche in der Mitte des Fotos blau, weil hier die Wasseroberfläche so orientiert ist, dass der blaue Himmel spiegelnd in die Augen reflektiert wird. An anderen Stellen blickt man auf den mit grünen Pflanzen marmorierten Grund. Die Farben werden zudem durch das Fließen und der dadurch bedingten endlichen Zeitauflösung bei der Wahrnehmung bzw. Fotoaufnahme modifiziert. Bei günstigen Lichtverhältnissen ist fließendes Wasser auch immer ein Kaleidoskop von Farben.
Die Eigenfarbe reinen Wassers ist übrigens blau, was man allerdings erst bei sehr großen Wasserschichten wahrnehmen kann.

Eine Lektion der Kirschen…

Eine schöne pralle Kirsche ist wie ein Wölbspiegel, wenn man nicht allzu große Ansprüche an die Wiedergabequalität stellt. Mit etwas gutem Willen sieht man zumindest schemenhaft sein eigenes Gesicht gespiegelt (rechte Kirsche auf dem Foto).
Die Oberfläche der Kirsche reflektiert das auftreffende Sonnenlicht sowohl diffus als auch spiegelnd. Aufgrund der diffusen Reflexion, die durch Absorption des weißen Lichts und Emission des roten Anteils zustande kommt, erhält die Kirsche ihre charakteristische Farbe. Ein Teil des auftreffenden Lichts dringt jedoch gar nicht so tief in die Kirsche ein. Es wird an der glatten Oberfläche spiegelnd reflektiert. Auch wenn der Anteil des  spiegelnd reflektieren Lichts so gering ist, dass es die Gegenstände, von denen das Licht ausgeht, nur schwer zu erkennen sind, machen sie den Glanz der Kirsche aus.
Blickt man aus einem Winkelbereich auf die Kirsche, aus dem das Licht der Sonne von ihr spiegelnd ins Auge des Betrachters reflektiert wird, kann das diffus reflektierte rote Licht völlig überstrahlt werden (siehe oberer Teil der linken Kirsche). Es entsteht der kugeligen Form der Kirsche entsprechend ein fast kreisförmiger weißer Fleck dessen Ränder allmählich ins typische Rot der Kirsche übergehen. Aber nicht nur das Rot wird hier ausgelöscht. Selbst der grüne Stängel der linken Kirsche erscheint weiß. Auch unterhalb der linken Kirsche ist ein weißer Fleck auf dem grünen Blatt zu erkennen, der ebenfalls der spiegelnden Überstrahlung zu verdanken ist.
Normalerweise werden die Grenzen zwischen den Bildern verschiedener Objekte auf der Netzhaut deren unterschiedlichen Farb- und Helligkeitseindrücken entsprechend gezogen. Bei sehr hellen Objekten werden die Rezeptoren aber über die Sättigung hinaus angesprochen und dadurch so stark erregt, dass gleich auch noch einige der benachbarten Rezeptoren reagieren. Dadurch entsteht dann der Eindruck, dass es auch an der entsprechenden Stelle des Netzhautbildes noch hell ist, obwohl es „in Wirklichkeit“ nicht der Fall ist. Wie die Abbildungen zeigen, treten ähnliche Überstrahlungen des intensiv belichteten Bereichs auch auf dem Foto auf.
Auf der rechten Kirsche sieht man ebenfalls einige helle Flecken. Sie sind jedoch von geringerer Intensität und haben einen schwach bläulichen Schimmer. Dafür sind Partien des durch die Blätter des Kirschbaumes hindurch leuchtenden blauen Himmels verantwortlich, die gerade so orientiert sind, dass ihr Licht zum Beobachter hin reflektiert wird.
Die Überstrahlung der diffusen Reflexion des roten Kirschenlichts durch die spiegelnde Reflexion darf nicht dahingehend missverstanden werden, dass die diffuse Reflexion unterbunden wird. Sie nimmt ebenfalls mit der Intensität des einfallenden Sonnenlichtes zu. Das kann man zum Beispiel daran erkennen, dass die Kirsche in den Bereichen intensiv rot erscheint, aus denen kein spiegelnd reflektiertes Sonnenlicht kommt.  Die Intensität des diffus reflektierten roten Lichts ist sogar so groß, dass die Kirsche wie eine kleine rote Laterne wirkt. Auf diese Weise werden die in der Nähe der Kirsche befindlichen grünen Blätter nicht nur von der Sonne und dem Himmel, sondern auch von der leuchtenden Kirsche angestrahlt. An einer Stelle sieht man daher das grüne Blatt rot schimmern, weil es zufällig günstig zum Beobachter hin orientiert ist. Würde dieser seinen Blickwinkel ändern, sähe vielleicht eine andere Stelle rot gefärbt aus.
Neben den Farben rot und grün ist auch noch das durch die Lücken zwischen den Blättern hindurchschimmernde Licht des blauen Himmels zu sehen.

Es blüht so grün…

Blumen blühen in den verschiedensten Farben, um zu gefallen und aufzufallen. Nicht unbedingt den Menschen, aber den Bestäubern, Bienen und anderen Insekten. Man findet alle Farben vertreten. Nur grüne Blüten gibt es selten. Das ist verständlich, weil die Blüten aus dem überwiegenden Grün der Pflanzen hervorstechen müssen, um nicht übersehen zu werden. Die wenigen grünen Blüten wirken weniger durch Ihre Farbe als durch Geruch und vermutlich auch durch Farben und andere Merkmale, die wir Menschen gar nicht wahrnehmen. Im vorliegenden Fall dürften Insekten kaum Interesse bekunden – die Blümchen entdeckte ich in einem Kunstmuseum

Himmelsfarben beim Blick nach unten

Diese Luftaufnahme zeigt drei Seen, die alle einen unterschiedlichen Blauton aufweisen. Auf den ersten Blick denkt man vielleicht an eine unterschiedliche Beschaffenheit des Wassers. Aber es scheint eine andere Ursache vorzuliegen. Dafür spricht, dass der Blauton umso dunkler erscheint, je steiler man auf die Wasseroberfläche blickt.
Da zur Farbe von Gewässern auch die Reflexion des Himmellichts beiträgt, sind die unterschiedlichen Farbnuancen eine Folge der unterschiedlichen Himmelsregionen, die in den Seen spiegelnd in unsere Augen reflektiert werden. Der vordere See spiegelt höhere Regionen in der Nähe des Zenits, die bekanntlich ein intensives Blau aufweisen, der mittlere See bietet einen Blick auf tiefere Himmelsregionen, die schon deutlich an Farbsättigung eingebüßt haben und der entfernte See gibt das helle horizontnahe Himmelsblau wieder.

Komplementarität von Blau und Gelb in der Natur

Dieser Anblick bot sich mir gestern bei einem Spaziergang. Die Wirkung dieser komplementären natürlichen Farben im Kontext eines sonnigen Frühlingstages löste eine innere Spannung aus, der ich nicht sogleich auf den Grund kam. Was hat es mit Gelb und Blau auf sich?
Bei Wikipedia konnte ich nachlesen , dass beispielsweise Vincent van Gogh in seinem Bild Kornfeld mit Krähen seine dramatische, ausweglose Situation zum  Ausdruck bringt und Ernst Ludwig Kirchner in seinem Gemälde Frauen auf der Straße die Entfremdung und Oberflächlichkeit des mondänen Großstadtlebens anprangert. Steckt da etwas Verallgemeinerungsfähiges hinter?
Trotzdem oder vielleicht gerade deshalb finde ich die Farbkombination in diesem Foto naturschön.

Ostereier aus Stein

Farbige Reflexe in einer Kirche

Die als Farbfilter wirkenden Elemente von Kirchenfenstern tauchen das Kircheninnere oft in ein stimmungsvolles, von manchen als mystisch empfundenes Licht, das sich zuweilen durch Reflexionen an den Bänken und anderen Gegenständen objektiviert.

Polygonale Sandmuster

Dieses polygonale Muster sah ich in einem dicht am Meer gelegenen hinter einigen Dünen tief gelegenen Sandgebiet. Obwohl es während der Beobachtung (Fotografie) völlig trocken war, vermute ich, dass die Musterung darauf zurückzuführen ist, dass unterhalb des Sandbodens das Grundwasser in geringer Tiefe anzutreffen ist. Und dieses Grundwasser dürfte wegen der Nähe des Meeres salzhaltig sein (Brackwasser). Durch die Verdunstung eines Teil des in Kapillaren zwischen den Sandkörnern aufsteigenden Salzwassers an der Oberfläche des Sandes bleibt gelöstes Salz zurück. Es führt allmählich zu einer Anreicherung des Salzes an der Oberfläche und damit zu einer helleren Färbung. Da ein Teil des Wasser an den Rändern solcher Polygone durch absinkendes Wasser innerhalb der Polygone teilweise kompensiert wird, entsteht ein solches an eine Bénardkonvektion erinnerndes Muster.

Dies ist eine grobe vorläufige Vermutung und muss weiter untersucht werden.

Verdoppelte Dämmerung

Farbenprächtige Dämmerung, bei der die Sonne selbst gar nicht zu sehen ist. Die glatten Oberflächen des im Rhythmus der auflaufenden Wellen feucht gehaltenen Sandstrands spiegeln die Farben in voller Brillanz. Eine Verheißung von Sommer…

Physikalische Erzählung einer Fensterfront

Ein buntes Kaleidoskop von Farben und Formen zeigt sich hier in Gestalt von Fensterscheiben. Obwohl die Fenster dicht beieinanderliegen treten die Reflexe in mehr oder weniger unterschiedlicher Weise auf.
Die Reflexe des 1., 3. und 10. Fensters (von oben links nach unten rechts gezählt) stimmen in ihrer Grundstruktur weitgehend überein. Entsprechendes gilt für das 4., 5., und das 8. Fenster; auch das 2. und 7. Fenster könnte man dazurechnen. Ganz aus dem Rahmen fallen das 6. und das 9. Fenster, deren Scheiben kaum eine Struktur zeigen, dafür aber eine weitgehend einheitliche tief blaue Färbung. Gemeinsam ist allen Fenstern, dass sie dem Reflexionsgesetz gemäß das Licht von den gegenüberliegenden indirekten Lichtquellen reflektieren. Das ist im Falle der beiden blauen Fenster der blaue Himmel. In allen anderen Fällen handelt es sich offenbar um Teile von Gebäuden, die der Fensterfront von der Sonne beschienen gegenüber liegen. Anders als man es in den meisten Fällen gewohnt ist, sind die gespiegelten Ansichten aber dermaßen verzerrt, dass sie so gut wie nicht zu erkennen sind. Man kann nur erahnen, dass in einigen Fällen ebenfalls Fenster der Ausgangspunkt für das Licht sind.
Der Grund für diese Verzerrungen liegt nicht etwa darin, dass es sich um schlecht gefertigte Fenster handelt. Vielmehr erkennt man an ihnen eindeutig, dass wir es mit doppelt verglasten, also modernen Fenstern zu tun haben. Sie sind aufgrund von Luftdruckunterschieden zwischen dem Innenraum der luftdicht verklebten Scheiben und der Außenwelt leicht nach innen oder außen gewölbt und wirken, wie in einem früheren Beitrag ausführlicher dargestellt, ähnlich wie Hohl- und Wölbspiegel. Im vorliegenden Fall dominiert allerdings nur der Reflex einer der beiden Scheiben.
Die Verzerrung und damit die Wölbung der Scheiben ist umso größer, je mehr sich die Stärke des Luftdrucks zwischen dem Innenraum der Doppelglasscheiben zum Zeitpunkt ihrer Herstellung und dem Außendruck bei der fotografischen Aufnahme unterscheidet. Die Ähnlichkeit der Verzerrungen der abgebildeten Scheiben weist darauf hin, dass der gleiche Außendruck geherrscht haben muss, die entsprechenden Scheiben also etwa zur gleichen Zeit hergestellt wurden. Dies gilt vermutlich nicht nur für die Scheiben 4, 5 und 8, sondern auch für die Restlichen. Der Unterschied ist vermutlich dem unterschiedlichen Grad der Strukturiertheit der reflektierten Gebäudeteile zuzuschreiben. Unstrukturierte Teile zeigen auch in der Reflexion keine Struktur, wie insbesondere bei den beiden Scheiben zu erkennen ist, die Ausschnitte des blauen Himmel reflektieren.
Bleibt nur noch die Frage, warum die beiden blauen Fenster aus der Reihe tanzen und offenbar über das gegenüberliegende Gebäude „hinwegschauen“. Wie am dunklen Schattenstreifen am oberen Rand dieser Fenster zu erkennen ist, stehen sie „Kipp“ und stellen daher einen anderen Einfallswinkel für das einfallende Licht dar als es bei den übrigen Fenstern der Fall ist. Die Kippstellung von Fenstern führt auch in anderen Zusammenhängen zu überraschenden Phänomenen (z.B. hier und hier, hier).
Die abgebildete Fensterfront hat also einiges zu „erzählen“ über
– die Art der Fensterverglasung,
– den Luftdruckunterschied zwischen Ort und/oder Zeit der Herstellung und ihres jetzigen Aufenthalts und
– über das Wetter.

Gefrorene Federn

Was hier so federleicht und bunt daherkommt, sind nicht die Federn eines bunten Eisvogels. Vielmehr blickt man auf Eiskristalle, die sich in einer dünnen Schicht ziemlich schnell ausbreiten. Normalerweise ist Eis unbunt zwischen transparent und weiß changierend. In diesem Fall liegt die Eisschicht zwischen zwei Polarisationsfolien. Die vor der Eisschicht platzierte Folie polarisiert das einfallende Licht und die hinter der Eisschicht befindliche Folie analysiert das beim Durchgang durch die Eiskristalle modifizierte Licht. Diese Modifikation (siehe unten) macht sich durch bunte Farben bemerkbar, die gewisse Auskünfte über die innere Struktur der Eiskristalle geben.

Wer es physikalisch etwas genauer wissen will, dem sei gesagt, dass Eis die optische Besonderheit hat, doppelbrechend zu sein: Das durch die Eisscholle hindurchgehende polarisierte Licht wird in zwei leicht unterschiedliche Richtungen gebrochen, so dass es in zwei Teilstrahlen zerfällt. Diese unterscheiden sich in ihrer Ausbreitungsgeschwindigkeit. Infolgedessen entsteht zwischen beiden Teilstrahlen eine unter anderem von der Wellenlänge abhängige Phasendifferenz. Sie macht sich in einer entsprechenden Drehung der Polarisationsebene bemerkbar, wenn sich die Teilstrahlen des Lichts beim Austritt aus dem Eis überlagern. Tritt dieses Licht dann durch ein Polarisationsfilter oder wird es in einem bestimmten Winkel reflektiert, so werden den unterschiedlichen Drehungen der Polarisationsebene entsprechend die verschiedenen Wellenlängen nur mehr oder weniger gut durchgelassen. Die auf diese Weise veränderten Intensitäten der einzelnen Wellenlängen des ehemals weißen Lichts äußern sich in verschiedenen Farben.

Rätselfoto des Monats März 2022

Geht hier alles mit rechten Dingen zu?


Dieses Bild hat ein leeres alt-Attribut; sein Dateiname ist 193_eiszapfen_img_6670rv.jpg.

Erklärung des Rätselfotos des Monats Februar 2022

Frage: Wie kommt es zu den Strukturen im Eiszapfen?

Antwort: Dieses reichlich strukturierte Muster besteht aus Lufteinschlüssen, die sich meist in der Mitte eines Eiszapfens bilden. In Wasser ist unter normalen Bedingungen – und das heißt u.a. bei Kontakt mit der Atmosphäre – stets mehr oder weniger viel Luft gelöst. Die Löslichkeit nimmt mit abnehmender Temperatur zu.
Doch wenn es so kalt wird, dass das Wasser gefriert, nimmt die Löslichkeit plötzlich drastisch ab und die überschüssige Luft wird während der Erstarrung des Wassers abgegeben. Die Eiszapfen frieren von außen nach innen zu, weil sie die bei der Kristallisation freiwerdende Wärme umso besser abgeben können, je näher sie der kalten Außenwelt sind. Wenn die Temperatur sehr niedrig ist und der Kristallisationsvorgang sehr schnell abläuft, kann die beim Erstarren zurückbleibende gelöste Luft nicht schnell genug nach außen abgegeben werden und sie bleibt daher in der Mitte des Zapfens als Luftblasenmuster zurück. Brechung und Reflexion beim Übergang des Lichts zwischen Eis und Luftblasen sorgen dafür, dass die „Luftseele“ trotz der Transparenz von Eis und Luft deutlich sichtbar wird.
Beim langsamen Gefrieren hat die Luft oft Zeit genug, an die Umgebung zu entweichen, sodass manchmal auch Zapfen ohne eingeschlossene Luftblasen entstehen und völlig klar erscheinen.



Schwarzweiß oder farbig – manchmal entscheidet der Blickwinkel

Beim Lesen eines Buches mit Op-Art-Abbildungen war mir irgendwie so, dass etwas Buntes durch das Glas hindurch schimmerte. Um festzustellen, ob es an mir oder am Glas Wein lag, füllte ich es kurzerhand mit Wasser und sah, dass das Glas oder besser die Flüssigkeit die Bilder lieber farbig hatte. Es ist also nicht der tiefe Blick ins Glas, sondern der Blick durch das Glas, der dieses Phänomen ermöglicht.
Schuld daran sind die Übergänge des vom Op-Art-Bild ausgehenden Lichts von Luft zum Glas, von Glas zum Wasser und vom Wasser zum Glas und dann wieder zur Luft, bevor es mein Auge erreicht. Dabei spielt das dünne Glas die geringste Rolle und muss nicht weiter betrachtet werden. Entscheidend ist der Durchgang des Lichts durch den Wasserkeil, wobei es ähnlich wie in einem optischen Prisma gebrochen und damit aus der ursprünglichen Richtung abgelenkt wird. Da die Lichtbrechung von der Wellenlänge des Lichts abhängt und damit für die verschiedenen Farben, aus denen sich das weiße Licht zusammensetzt, unterschiedlich groß ist, laufen die einzelnen Farben gewissermaßen auseinander und werden schließlich getrennt voneinander wahrgenommen. Man sieht also die weißen Teile des schwarzweißen Op-Art-Bildes in mehreren ineinander verschwimmenden Versionen.
Man kann auch künstlerisch tätig werden, indem man den Blick durchs Glas auf unterschiedliche Weise auf Schwarzweißbilder und andere Darstellungen richtet und sich den schönsten Anblick auswählt.

Gott, heißt es, schied die Finsternis vom Licht,
Doch mocht es ihm nicht ganz gelingen,
Denn wenn das Licht in Farben sich erbricht,
Mußt es vorher die Finsternis verschlingen.
*

* Johann Wolfgang von Goethe (1749 – 1832)

Galaktische Nebel in der Wasserpfütze

Was mag das sein, das hier wie ein galaktischer Nebel durch zahlreiche Sterne hindurch gesehen daherkommt? Ich war mir vollkommen sicher, dass ich den Blick nicht nach oben gerichtet und kein Riesenteleskop vor Augen hatte, sondern ohne Hilfsmittel nach unten in eine zugefrorene Wasserpfütze.
Schaut man genauer hin, so erkennt man durch die ansonsten ziemlich glatte Eisschicht hindurch verfaulende Blätter und andere Überbleibsel aus der vergangenen Vegetationszeit. In die Eisschicht integriert zeichnen sich in zarten vor allem Blautönen Strukturen ab, die an Spuren biologischer Aktivität erinnern. Ähnlich wie beim Gefrieren von Wasser die darin enthaltene Luft gewissermaßen ausgeschwitzt wird, sind es hier vermutlich proteinhaltige Bestandteile der verwesenden Biomasse, die sich an der Wasseroberfläche abgesetzt haben und einen äußerst dünnen Belag bilden. Dieser ist offenbar so dünn, dass es aufgrund der Überlagerung des an der vorderen und hinteren Grenzschicht reflektierten Lichts zu ähnlichen Strukturfarben wie bei einer Ölschicht auf einer nassen Straße. Die weißen „Sterne“ sind winzige im Eis eingefrorene Gasblasen, die von innen mit Reif belegt sind.
Wie dem auch sei, es ist auf jeden Fall ein naturschöner Anblick, der zumindest einen Teil seines Geheimnisses bewahrt hat – jedenfalls bis jetzt. Ich habe schon einige Male die Schönheit zugefrorener und zufrierender Pfützen gezeigt. Dort wurden die Strukturen vor allem durch das parallel zum Gefrieren versickernde Wasser hervorgerufen. In diesem Fall zeugt aber die glatte Eisfläche davon, dass der Wasserspiegel während des Gefrierens weitgehend gleich geblieben sein muss. Als Ursache käme eine Versiegelung des Pfützenbodens durch die Sedimentation feinstrukturierter Überreste der verwesenden Biomasse infrage. Meist sind solche Pfützen sehr langweilig und manchmal bei genügender Länge allenfalls zum Glitschen zu gebrauchen. Hier aber finden wir in der verhältnismäßig dicken Eisschicht andere beeindruckende Strukturen.
Das Schöne an der dicken Eisschicht ist außerdem, dass sie nicht so leicht zu zerstören ist. Viele Menschen, auch Erwachsene, genießen eher das akustische Phänomen der klirrend zerbrechenden Eisscheiben als die Wohltat für die Augen.

Ein wenig Farbe ins trübe Grau

Eigentlich sollte dies ein physikalischer Beitrag zu den Farben der Spannungsdoppelbrechung werden. Dazu habe ich im schwach polarisierten Himmelslicht einen Kunststoffbehälter fotografiert. Die Farben fielen jedoch ziemlich flau aus. Ich wollte mit einem Bildbearbeitungsprogramm etwas nachhelfen, um den Effekt deutlicher zu machen und landete bei diesem Bild (siehe Foto), das ich aber ehrlicherweise nicht mehr als reinen physikalischen Effekt verkaufen kann, weil die Farben übertrieben bunt ausfallen. Da sie aber einen schönen Kontrast zum aushäusigen Grau abgeben, bringe ich es hier trotzdem. Auf die natürlichen Polarisationsfarben komme ich dann später zurück, wenn die blühenden Blumen ihre Zuständigkeit für schöne Farben übernommen haben.

Der Winter kündigt sich mit feinen Kristallen an

Jetzt beginnt die Zeit, in der die Herbstfarben allmählich in den Hintergrund treten, auch wenn sie noch keck durch die Kristalle hindurchschimmern, mit denen der aus Schwarzweiß ausgerichtete Winter das Bunte zu überkrusten versucht. Die Eiskristalle haben sich in der klaren kalten Nacht gebildet. Sie streben alle in nachbarschaftlicher Konkurrenz dem Himmel zu, weil es in der Nähe der Blattoberfläche noch zu warm ist, um die Kristallisationswärme loszuwerden. Denn das ist der energetische Preis für den Übergang vom Gas zum Festkörper.
Jeder Kristall startet auf einem Härchen oder einer kleinen Erhöhung auf dem Blatt und wartet auf Wasserdampfmoleküle, die sich den bereits kristallisierten und damit fixierten zugesellen.
Wir sehen hier nicht mehr die Schönheit des Herbstes, sondern des Übergangs zum Winter, der demnächst auch offiziell beginnt. Inoffiziell hält er ja bereits als meteorologischen Winterbeginn seit Monatsanfang in unseren Breiten seinen noch schüchternen Einzug.

Schlitzäugiger Dämon

In Orchideen scheint man manchmal Gesichter zu sehen, in denen bei näherem Hinsehen und mit etwas Fantasie weitere Gesichter zu sehen sind. Vor dem weißen Hintergrund der Blütenblätter kommen die zarten Farben direkt oder durchscheinend besonders eindrucksvoll zum Ausdruck. Und die Schatten verleihen dem Ganzen eine gewisse Tiefe.

Himmelblaue Dünen

Dies liefert uns die Erklärung für ein sehr eigenartiges Phänomen, dem die Maler viel Aufmerksamkeit gewidmet haben, und daß Anlaß einer Denkschrift von Herrn de Buffon gewesen ist, dessen physikalische Ursache jedoch meines Wissens noch niemand angegeben hat; die Schatten nehmen dies Morgens und des Abends eine intensiv blaue Färbung an, und wenn eine Kerze an die Stelle der Sonne tritt und diese noch nicht aufgegangen ist, aber kurz davorsteht, entsteht fast dieselbe Wirkung. Dieses Phänomen wird von der Luftfarbe der Atmosphäre, welche diese Schatten beleuchtet und in der die blauen Strahlen vorherrschen, verursacht: die blauen Strahlen prallen in großen Mengen schräg zurück, während die roten, die sich weiter weg in gerader Linie verlieren, den Schatten nicht modifizieren können, weil sie sich nicht oder weit weniger reflektieren.*

Die eigenartige Wirkung, die von diesem Bild ausgeht, liegt vermutlich darin begründet, dass Dünen und Schatten ziemlich genau in Komplementärfarben erstrahlen. Die Aufnahme erfolgte am frühen Morgen kurz nach Sonnenaufgang.


* Pierre Bouguer. Traité d’optique sur la gradation de la lumiére (1760) zit. in: Michael Baxandal.Löcher im Licht; München 1998; S. 126-127

Leuchtende Blätter im Herbst

Dieser Wald ist an einer Stelle derart hell, dass es im ersten Moment so aussieht, als würde das Blattwerk aus sich heraus leuchten. Es ist aber nur das einfallende Sonnenlicht, das hier von den Blättern bereitwillig wieder abgegeben wird.
Dadurch dass im Herbst viele Bäume ihren Blättern das Blattgrün entziehen, nehmen diese meist die Farbe der zurückbleibenden Farbstoffen an, die bislang vom Blattgrün überdeckt wurden. Dies sind vor allem Carotinoide und Gerbstoffe. Die Carotinoide treten in dem Maße hervor, wie das Blattgrün verschwindet und färben beispielsweise Birkenblätter und Lärchenblatter gelb. Die Gerbstoffe sind für die Braunfärbung von Buchen und Eichen verantwortlich. Bei manchen Bäumen werden aber aber auch Farbstoffe, z.B. die Anthocyane neu gebildet. Sie sollen das Blatt solange vor Schädigungen durch das Sonnenlicht zu schützen, wie die Nährstoffe gesichert werden. Anthocyane rufen die Rotfärbung mancher Bäume, zum Beispiel beim Ahorn oder wilden Wein hervor. Im vorliegenden Fall reflektieren die zurück gebliebenen hellen Farbstoffe mehr Licht als es normalerweise der Fall war..

Sonne, Blüten, Meer…

Kaum zu glauben, dass ich vor zwei Wochen noch diesen Anblick genießen durfte. Inzwischen gewinne ich den Farben unserer Herbsten ähnlich positive Gefühle ab….

Ich stand früher auf als die Sonne

In den letzten Tagen war ich noch vor der Sonne aufgestanden. Und da ich mich am Meer befand, ließ ich mir das Erlebnis der gegenseitigen Begrüßung nicht nehmen. Zugegeben, das ist im Winterhalbjahr leichter als im Sommerhalbjahr, aber der Weg zum Meer war auch noch einzurechnen.
Meistens brauchte die Sonne noch eine Strecke, um durch eine diffuse Horizontbewölkung hindurchzukommen. Je nach deren Dichte gab es dann einige Vorgeplänkel partieller Sichtbarkeit der Sonnenscheibe, bis sie dann mit praller Strahlkraft durchbrach und mich zwang, die Augen zu senken.
Dass die Sonne sich aus der Dunstschicht erhebt, ist auch an ihrer uneinheitlichen Färbung zu erkennen. Im unteren Bereich wird noch so viel Licht von der mit der Höhe sich verflüchtigenden (Warum?) Dunstschicht absorbiert, dass die Lichtintensität unseren Augen noch nichts anhaben kann. Es sind vor allem die langwelligen Anteile Rot und Gelb zu erkennen, die vom weißen Sonnenlicht nach der langen Passage schräg durch die Atmosphäre übrig bleiben. Im oberen Bereich der Sonnenscheibe ist bereits das gleißende Weiß des Sonnenlichts zu sehen ist, das kurze Zeit später die ganze Sonnenscheibe erfüllt.
Wenn man den Sonnenaufgang bewusst auf sich wirken lässt, wird man erstaunt sein, wie schnell die Sonne sich erhebt. Es dauert nur etwas mehr als 2 Minuten bis die Sonne ihren eigenen Durchmesser durchlaufen hat. Dieser Eindruck von Schnelligkeit entsteht vor allem deshalb, weil man den Horizont als Bezugslinie im Blick hat, von dem sich die Sonne entfernt.

Blaustich

Schönheit ohne Zuschauer

Da keiner auf der Bank sitzt, um die schönen Herbstfarben zu betrachten und sich von ästhetischen Eindrücken forttragen zu lassen, kann man sich fragen, ob das alles auch da ist, wenn keiner hinschaut. Das klassische Sichtbarkeitspostulat besagt, dass Gott nichts geschaffen habe, was der Mensch nicht auch (an)schauen könne. Mit diesem Argument wurde zu Beginn der Neuzeit die Realität dessen angezweifelt, was über die Fähigkeit der Augen hinaus durch das Fernrohr und andere optische Hilfsmittel zu sehen war. Die Frage war, ob nicht bei Abwesenheit von Betrachtern der Aufwand der Schönheit überhaupt getrieben werden müsste.

Aus weiß wird schwarz

Im Hintergrund sieht man im ablaufenden Wasser an der Nordseeküste futtersuchende Vögel. Merwürdigerweise hatten sich auf der rechten Seite weiße Vögel versammelt (rechtes Foto) und auf der linken schwarze (linkes Foto: zum Vergrößern klicken). Ich dachte zunächst an Zufall. Als ich aber am Wasser entlang nach rechts wanderte merkte ich, dass dabei in dem Maße wie ich vorankam die vorher weißen Vögel schwarz aussahen. Erst dadurch wurde mir klar, dass alle Vögel weiß waren. Sie erschienen mir dann schwarz, wenn ich gegen das Licht der untergehenden Sonne blickte (linkes Foto) und der Kontrast zwischen der hellen Umgebung und der Schattenseite der weißen Vögel so groß wurde, dass letztere schwarz erschien. Demgegenüber sah ich die Vögel in ihrer wahren Farben, wenn ich sie im vollen Sonnenlicht vor Augen hatte. Eigentlich klar, aber erst die unwahrscheinliche Wandlung von weiß nach schwarz machte mich stutzig.
Dieses Beispiel zeigt, wie leicht man zu Fehleinschätzungen kommen kann. Denn nicht immer wird man durch einen Widerspruch in der Wahrnehmung zu einem kritischen Blick veranlasst.

Die „Farbe“ Weiß durch Totalreflexion

Schneebeeren sind weiß und erinnern somit an den Schnee. Die Namensgebung ist auch dadurch gerechtfertigt, dass die Beeren außer durch die Farbe einen weiteren Bezug zum Schnee haben. Sie hängen oft auch noch im Winter an den Ziersträuchern gleichen Namens ((Symphoricarpos albus), wenn die Blätter bereits vergangen sind. Und wenn die Winter in unseren Breiten immer schneeärmer werden, übernehmen die Schneebeeren immer mehr die Funktion, uns an die Farbe des Schnees zu erinnen.
Als Kinder hatten wir unseren Spaß mit den weißen Früchten. Wenn man sie zwischen Daumen  und Zeigefinger zerquetschte oder auf dem Boden zertrat, gaben sie einen vernehmlichen Knall von sich. Wir nannten sie wegen der Ähnlichkeit zum damals für Kinder zulässigen Silvesterknaller auch Knallerbse.
Mit ihrer weißen Farbe verweisen die Schneebeeren nicht nur äußerlich auf den Schnee. Die Farbentstehung ist in beiden Fällen ganz ähnlich. Die Frucht besteht nämlich zum Teil aus luftgefüllten Hohlräumen, was man übrigens daran merkt, dass sie beispielsweise im Vergleich zur etwa gleich großen Kirsche äußerst leicht ist. Diese Hohlräume führen dazu, dass das eindringende Licht beim Übergang von der optisch dünneren Luft zur optisch dichteren festen wässrigen Substanz ab einem bestimmten Einfallswinkel total reflektiert wird. Das heißt es dringt nicht in das dichtere Medium ein, sondern wird wie an einem Spiegel so gut wie unverändert zurückgeworfen. Und wenn es nicht erneut total reflektiert wird, kommt es abgesehen von geringen Absorptionsverlusten nahezu ungeschwächt zurück. Allerdings wird das Licht der jeweiligen Form der Grenzflächen und der Zahl der Reflexionen entsprechend in verschiedene Richtungen, also diffus reflektiert, sodass der Gegenstand im Idealfall weiß erscheint.
Wenn man die Beere zerdrückt, gerät die Luft in den Hohlräumen zunächst unter Druck bis die Wände reißen und die Luft mit einem Knall entweicht. Dabei werden die Hohlräume mit der wässrigen Substanz der Beere erfüllt , sodass diese glasig wird und sich teilweise bräunlich verfärbt. Fazit: Wenn die Luft raus ist, findet die Luftnummer ihr Ende.
Auch bei den an sich transparenten Eiskristallen, aus denen die Schneeflocken aufgebaut sind, wird das Licht nur zum Teil an den Kristallebenen reflektiert, zu einem anderen Teil dringt es in die Eiskristalle ein und wird beim Wiederaustritt an der Grenzfläche zu den lufterfüllten Zwischenräumen oberhalb des kritischen Winkels total reflektiert. Daher liegt dem Weiß des Schnees und der Schneebeere eine ähnliche physikalische Ursache zugrunde.
Viele weiße Blüten, zum Beispiel die des Buschwindröschens, verdanken ihr Weiß ebenfalls der Totalreflexion.
Manchmal führt die Totalreflexion zu recht merkwürdigen Effekten, wie man sie beispielsweise beim Eindringen eines Laserstrahls in eine dünne Wasserschicht beobachten kann.

Weiterlesen

Noch sind viele Blätter grün

Dieses vermutlich vorzeitig gefallene auf dem Boden liegende grüne Blatt hat ein zwiespältiges Verhältnis zum Wasser. Einerseits lässt es sich vom Wasser nicht flächendeckend benetzen, ist also nicht total wasserliebend (hydrophil). Andererseits stößt es das Wasser nicht völlig ab und erlaubt einzelnen Tropfen und Tröpfchen die Blattoberfläche zu bedeckten. Lediglich in den grabenartig vertieften Bereichen der Blattadern werden größere Benetzungsgebiete dadurch erzwungen, dass die Tröpfchen infolge der Schwerkraft die Vertiefung ausfüllen.
Während die größeren Wasserflächen das Grün des Blattes kräftig hervortreten lässt, wird es in den übrigen von Tropfen bedeckten Bereichen erheblich ausgeblichen. Denn insbesondere die kleineren Tröpfchen streuen ähnlich wie Nebeltröpfchen das auftreffende Licht und „verwässern“ das Blattgrün. Dadurch und durch die selbstähnliche Struktur der unterschiedlich großen Tropfen ergibt sich insgesamt eine naturschöne Struktur, die wert ist auch einem gefallenen Blatt eines Blickes zu würdigen.

Variation und Präzision

Ich habe lange überlegt, was mich ästhetisch an diesem Ausschnitt aus einer Steinmauer so fasziniert. Ich bin zu dem Ergebnis gekommen, dass es das irritierend anziehende Wechselspiel zwischen Präzision und Variation in Form und Farbe ist. Hier ist eine Fläche mit hoher geometrischer Präzision durch Elemente aufgeteilt worden, von denen keines wie das andere ist – jedenfalls nicht genau. Jedes Element hat eine andere Größe und eine ander Farbe, wenngleich sie sich teilweise sowohl in einigen Fällen in der Größe, der Form und der Farbe kaum unterscheiden.

Lichtreflexionen am Strand

Es ist, als ob das Meer ein- und ausatmet. Dabei fließen Wellen den Strand hinauf und wieder hinab. In der im Foto festgehaltenen Situation hat sich das Wasser gerade zurückgezogen, bevor es wieder einen neuen Versuch startet, das Land zu erobern – im typischen Rhythmus des akustisch untermalten Auf- und Abschwellens.
Im Licht der Sonne ist die Grenze zwischen trockenfallendem Strand und dem Wasser ein mehr oder weniger breiter heller Streifen, der sich hier wie eine schwankende Diagonale durch das Bild zieht. In diesem Streifen ohne eindeutige Zugehörigkeit sind die Sandkörnchen noch so nass, dass jedes von ihnen das Licht in die Richtung reflektiert, die durch die Orientierung der spiegelnden Flächen vorgegebene Richtung wird. Bei so vielen Teilchen wird auch auf engstem Raum eine darunter sein, die Licht in unsere Augen lenkt, so dass es fast so aussieht als würde die Fläche als Ganzes spiegeln.
Auf dem nahezu trockenen Strand gibt es nach dem kurzfristigen Rückzug nur noch einzelne benetzte Flächen auf den Steinen, die zufällig so orientiert sind, dass wir das gespiegelte Licht sehen. Einen Schritt weiter würde es zwar auch nicht viel anders aussehen, aber dann sind es andere Flächenelemente, die uns das Sonnenlicht zuschicken.
Im flachen Wasser sind es zum einen wieder die benetzten Steine und einige Wellenflanken, die uns das Licht zuspiegeln. Hinzu kommen auf dem Wasser driftende weiße Schaumfladen, die das Licht diffus in alle Richtungen reflektieren (links unten).
Das Wasser ist ansonsten blau. Nicht weil Wasser an sich blau ist – dazu ist die Wasserschicht viel zu dünn, als dass man seine Farbe sehen könnte. Aus dem Alltag weiß man, dass die üblichen Schichtdicken von wenigen Dezimetern noch völlig farblos erscheinen. Vielmehr reflektiert es das aus fast allen Richtungen blaue Himmelslicht.

Bunte Treppen in Spinnennetzen

Heute ist Tag- und Nachtgleiche. Die dunklen Stunden haben zu- und die hellen abgenommen. Heute sind sie beide gleich lang. Damit beginnt nun auch offiziell der Herbst. Die Sonne steigt tagsüber nicht mehr so hoch über den Horizont. Man wird daher oft geblendet. Zum Ausgleich bekommt man aber auch einiges geboten. Zum Beobachten der Sterne braucht man nicht mehr so lange zu warten und – darauf möchte ich heute aufmerksam machen – man kommt häufiger die Chance, Spinnennetze gegen die tiefstehende Sonne in bunten Farben aufflammen zu sehen (siehe Foto). Flach gegen die Sonne betrachtet sieht man, wie das Sonnenlicht an den dünnen Spinnfäden und den darauf befindlichen winzigen Klebetröpfchen gebeugt und dadurch in einzelne Spektralfarben zerlegt wird. Achtet mal darauf wenn ihr an Bäumen und Büschen vorbeikommt, die im Lichte des Sonne liegen.
Das Gefühl, dass im Herbst mehr Spinnennetze vorhanden sind, rührt vor allem daher, dass diese durch Tautröpfchen und durch die Lichtbeugung häufiger gesehen werden als in anderen Jahreszeiten.

Photoarchiv