//
Artikel Archiv

Strukturbildung, Selbstorganisation & Chaos

Diese Kategorie enthält 209 Beiträge

Wintermalerei

Fenster unseres Wintergartens. Die Blume war an der Scheibe festgefroren und hinterließ dieses schöne Gemälde.

Werbung

Der perfekte Dominoeffekt

H. Joachim Schlichting. Spektrum der Wissenschaft 2 (2023)

Es sollte ›alles, was der Fall ist‹
in theoretischen Gewahrsam kommen

Hans Blumenberg (1920–1996)

Wenn in einer Reihe von Dominosteinen einer umfällt, kommt es oft zur Kettenreaktion. Wie schnell diese abläuft und ob es ohne Unterbrechung klappt, hängt von mehreren Parametern ab: dem Abstand der Steine, der Reibung zwischen ihnen und der Wechselwirkung mit dem Untergrund.

Die beim Dominospiel verwendeten Steine haben schon vor vielen Jahren auf eine ganz andere Art Karriere gemacht. Sie werden dabei nicht mehr nach Regeln aneinander gelegt, sondern in einer möglichst langen Reihe hochkant aufgestellt. Das geschickte Arrangieren findet seinen Abschluss darin, den ersten Stein gegen den zweiten fallen zu lassen. Das löst eine mehr oder weniger schnell laufende Kippwelle aus, die in einer Kettenreaktion durch das gesamte System läuft. Die Energie zum Antrieb des Spektakels stammt aus der Höhenenergie der Dominos.

or dem Start ist jeder Stein in einem stabilen Gleichgewicht. Sein Schwerpunkt befindet sich senkrecht über der Auflagefläche, und seiner Höhe entsprechend besitzt der Dominostein Höhenenergie. Um ihn über seine Kante zu kippen, muss der Schwerpunkt zwangsläufig zunächst ein wenig angehoben werden, bevor der Stein fällt. Dann wird die Höhenenergie in Bewegungsenergie umgesetzt. Diese überträgt sich teilweise beim Aufprall auf den nächsten aufgestellten Stein und stößt ihn um, wodurch nun der übernächste in der Reihe umgeworfen wird und so weiter. Ein Ziel besteht darin, durch geeignete Platzierung der Dominos eine möglichst schnelle Welle auszulösen. Dabei wird in der Regel stillschweigend unterstellt, die Reibung mit dem Boden sei so groß, dass die Steine darauf nicht wegrutschen. Das ist bei den üblichen Untergründen meistens gewährleistet.

Es kann aber auch anders sein. Das zeigt zum Beispiel ein mit einer Hochgeschwindigkeitskamera aufgenommenes Video des Youtubers Destin Sandlin. Die auf seinem Kanal »SmarterEveryDay« dokumentierten Experimente haben David Cantor von der Polytechnique Montréal und Kajetan Wojtacki vom Forschungsinstitut für Grundlagentechnologie der Polnischen Akademie der Wissenschaften in Warschau zu näheren Untersuchungen inspiriert. Mit Hilfe von Computersimulationen brachten die beiden Physiker Ketten von bis zu 200 Dominos zu Fall. Sie variierten den Abstand zwischen den Steinen und die Reibungskräfte mit dem Untergrund sowie untereinander.

Eine Erkenntnis daraus: Bei kleinem Abstand zwischen Dominos, wenn also die Kante des angetippten Steins weit oben auf den Nachbarn prallt, breitet sich die Welle nur langsam aus. Denn zum einen ist infolge der geringen Höhendifferenz die Bewegungsenergie noch klein. Zum anderen gleiten während des gemeinsamen Kippens die Stirnflächen lange aneinander, das heißt die Reibungskraft wirkt über eine verhältnismäßig große Strecke, wodurch sich viel Bewegungsenergie in Wärme umwandelt.

Ein rutschiger Untergrund bremst die Kettenreaktion zusätzlich, weil die Steine infolge des Aufpralls im bodennahen Bereich etwas nach hinten weggleiten. Umgekehrt wird die Welle schneller, wenn die Reibung mit dem Untergrund steigt und die Streckenverluste durch solch ein Wegrutschen sinken. In der Praxis haben die Dominos meist gute Bodenhaftung.

Ein interessantes Verhalten ergibt sich bei einem größeren Zwischenraum bis hin zur dreifachen Steindicke. Hier ist kein rückwärtiges Weggleiten mehr zu beobachten – und zwar unabhängig von der Stärke der Reibung mit dem Boden. Der niedrigere Aufprallpunkt kippt den Nachbarn zwar weniger wirkungsvoll um als es beim Anstoßen mit einem kürzeren Hebel oberhalb des Schwerpunkts der Fall ist. Die große Fallhöhe sorgt aber für mehr Bewegungsenergie, und das verhindert weitgehend das Zurückrutschen des Steins. Die beiden gegensätzlichen Effekte gleichen sich teilweise aus, und in einem gewissen Abstandsbereich bleibt die Geschwindigkeit der Welle etwa gleich.

Überschreitet in den Simulationen die Lückenbreite jedoch die dreifache Dicke der Steine und wird die Reibung zwischen den Dominos größer und mit dem Untergrund kleiner, wird die Welle instabil. Denn bei einer solchen Kombination gleiten die Steine mitunter so weit zurück, dass sie ihre Nachbarn nicht mehr erreichen.

Außerdem ändert sich die Fortpflanzungsgeschwindigkeit nur noch wenig, sobald der Reibungskoeffizient zwischen den Dominos einen bestimmten Wert überschreitet. Vermutlich gleiten die Steine dann ohnehin kaum noch aneinander ab, und es tritt eine Art Sättigungseffekt auf. Ähnliche Erscheinungen gibt es beim Einfluss der Reibung auf den Böschungswinkel eines stabilen Haufens aus Sand. Daher vermuten die beiden Forscher hinter dem Verhalten ein universelles Phänomen.

Die schnellste Wellenausbreitung gibt es mit einer Konfiguration, bei der die Dominosteine relativ dicht zusammenstehen und eine große Reibungskraft mit dem Boden sowie eine kleine untereinander ausüben. Cantor und Wojtacki ermittelten eine Höchstgeschwindigkeit von 2,25 Metern pro Sekunde.

Solche Simulationen helfen zwar, das Verhalten einer Dominokette bis hin zu praktisch nicht mehr realisierbaren Konstellationen auszuloten und zu visualisieren. Damit versteht man jedoch nicht zwangsläufig alle Aspekte der komplexen Dynamik besser. So gibt es beispielsweise im Video von Destin Sandlin seitliche Drehungen, bei denen einzelne Steine regelrecht aus der Reihe zu tänzeln scheinen, wenn sie nicht perfekt mittig angestoßen wurden. Solche Auswirkungen erfasst das virtuelle Kippen von Cantor und Wojtacki nicht. Das manuelle Aufstellen hat Experimenten im Computer noch manche faszinierenden Aspekte voraus. Mehr Spaß macht es ohnehin.

Quelle

Cantor, D., Wojtacki, K.: Effects of friction and spacing on the collaborative behavior of domino toppling. Physical Review Applied 17, 064021 (2022)

Weiß und bunt – mineralisch und botanisch

Man könnte auch sagen Eis und bunt. Denn die weißen Pflanzen, die sich hier als Alternative zur Botanik aufspielen, sind Kristalle aus Eis. Interessanterweise haben sie sich an den Resten der botanischen Pflanzen niedergelassen, so als würden sie nur das fortsetzen, was die grünen Pflanzen zurzeit der Kälte wegen weitgehend ruhen lassen müssen. Sie wetteifern auf diesem Foto mit den bunten Farben auf dem zu Matsch marginalisierten und dann gefrorenen ehemaligen Bach. Farbgeber ist eine andere uns wenig vertraute aber dafür zur organischen Welt gehörende Lebenform: Bakterienkolonien. Sie existierten hier schon vor dem Frost als Biofilm, in einer dünnen Kahmhaut, die die Bakterien auf dem Wasser bildeten. An den schönen Interferenzfarben kann man erkennen, dass diese Haut sehr dünn ist (Größenordnung: Wellenlänge des sichtbaren Lichts). Ob die Tierchen trotz der Erstarrung zu einer Eisschicht noch leben und die Frostphase lebend überstehen, konnte ich auf die Schnelle nicht herausfinden.

Tropfen im Sand

Wenn ein Wassertropfen auf eine feste Unterlage auftrifft, bildet er für den Bruchteil einer Sekunde eine Krone aus Wasser. Im unteren Foto sieht man einen seitlichen Blick auf eine solche Krone. Sie ist also ohne Hilfsmittel nicht wahrnehmbar. Daher empfand ich es als äußerst befriedigend, eine materielle und länger haltbare Nachbildung einer solchen Krone zu Gesicht zu bekommen (siehe oberes Foto). Der Ort des Geschehens ist eine wüstenartige Landschaft, die aus winzigen Sandkörnern besteht. Ein fallender Tropfen benetzt beim Aufprall den feinen Sand und reißt ihn beim Bestreiben eine Krone zu formen mit in die Höhe.

Da der Sand sehr wasserliebend (hydrophil) ist und sich sofort das Wasser des Tropfens einverleibt, wird er ein Stück weit mit in die Höhe gerissen, ohne jedoch die Höhe zu erreichen, die der Tropfen ohne den sandigen Ballast erreicht hätte und ohne die filigrane Substruktur auszubilden, die im unteren Foto ansatzweise zu erkennen ist.
Dafür wird die Krone jedoch für längere Zeit materialisiert. Denn anders als der trockene ist der befeuchtete Sand formbar und eine gewisse Zeit in dieser Form beständig, wie jedes Kind vom Sandburgenbau mit feuchtem Sand weiß.
Bleibt nur die Frage, wie der Tropfen in die Wüste gelangt. Nun, es war ein Schweißtropfen, den ich an einem heißen Tage bei einer Dünenwänderung verlor.

Eiskunst auf der Wasserpfütze

So manche zugefrorene Wasserpfütze (hier ein Ausschnitt) besticht durch oft naturkünstlerische (ich weiß – ein Oximoron) Muster, die in einer ziemlich direkten Weise das visualisieren, was schon vorher irgendwie da war, bevor die Temperatur unter den Gefrierpunkt sank. Will man dennoch beschreiben, was bei der Übersetzung der Beschaffenheit der Pfütze von einer hohen in eine tiefe Temperatur passierte, so muss man sich auf wesentliche Aspekte beschränken. Dazu zählen die Beschaffenheit des matschigen Untergrunds der Pfütze, die Geschwindigkeit, mit der Wasser versickert (vermutlich an den verschiedenen Stellen unterschiedlich), die Temperaturschwankungen, die Luftfeuchte, die Bedeckung des Himmels… Und selbst wenn man diese Aspekte alle in Betracht zieht, könnte wohl kein Computerprogramm die Entwicklung dieses Musters vorherberechnen. Wir kennen zwar die Naturgesetze, die bei dieser Entwicklung im Spiel sind, aber Details und insbesondere sensitive Punkte, bei denen es durch winzige Unterschiede zu qualitativ völlig anderen Strukturbildungen kommen kann, haben wir grundsätzlich nicht im Griff. Um es etwas pauschaler zu sagen: Der Zufall spielt oft mit dem Zünglein an der Waage.
Dennoch, einige typische Entwicklungen beim Zufrieren der Pfütze können zumindest im Prinzip physikalisch beschrieben werden. Wer sich dafür interessiert, sei auf frühere Beiträge verweisen, z.B. hier und hier und hier und hier und hier und hier und hier)

Reif für ein Foto

Die hohen Bäume haben weitgehend verhindert, dass sich in der vorangegangenen sternklaren Nacht die Energieverluste (durch Abstrahlung zum kalten Himmel) von den unter ihrem Dach hausenden kleineren Pflanzen in Grenzen hielt. Jedenfalls reichte die Abkühlung nicht aus, dass der Tau- und Gefrierpunkt unterschritten wurde. Sie blieben weitgehend trocken und eisfrei. Weitgehend. Denn eine Pflanze machte eine auffällige Ausnahme und ließ sich von einer leuchtend weißen Reifschicht überziehen. Vor dem ansonsten relativ dunklen, meist durch Brautöne bestimmten Hintergrund nimmt sich diese faszinierende Symbiose aus organischen und anorganischen Strukturen wie ein dendritischer Leuchtturm aus.
Diese Interpretation des Szenarios lässt sich dadurch stützen, dass ich von der Planze aus durch eine Lücke im Blätterdach der Bäume auf den unbewölkten Himmel blicken kann. Auf diese Weise strömt reichlich Licht ein, das an den Eisstrukturen nahezu vollständig reflektiert wird und zu diesem erhellenden Effekt führt – und mich zu dieser kleinen Geschichte anregt.

Haareis – des Winters Zuckerwatte

Nachdem ich vor wenigen Jahren zum ersten Mal Haareis in freier Natur gesehen habe – aus Abbildungen kannte ich es bereits – entdecke ich es immer häufiger. Ich weiß inzwischen, dass dies ein typisches Zeichen für die Wahrnehmungsaufmerksamkeit ist: Man sieht nur was man kennt. So auch vor ein paar Tagen. Kaum sinkt die Temperatur unter den Gefrierpunkt, taucht das weiße Haar im Untergehölz des nahe liegenden Buchenwaldes auf. Die Bedingungen waren allerdings auch ideal, denn einerseits hatte die vorangegangene Regenzeit alles schön durchfeuchtet und andererseits fiel auch die Temperatur nicht allzu weit unter den Gefrierpunkt. Diesmal sah ich das wie Zuckerwatte anmutende Naturprodukt sogar in einem höher gelegenen abgestorbenen Ast einer Buche. Vor kurzem gab ich eine physikalische Erklärung für dieses – offenbar gar nicht mehr so seltene – Naturphänomen..

Von der Lust Eis zu kratzen…

Nicht immer ist das Eiskratzen an zugefrorenen Autoscheiben ein Vergnügen. In diesem Fall war es anders. Ich konnte nämlich beim Beseitigen der Eisschicht meine Augen auf dem mit naturschönen Eiskristallbändern verzierten Dach weiden lassen. Ähnliche Formen hatte ich bislang nur selten und zwar meistens auf Fensterscheiben gesehen.
Beim Anblick dieser dendritischen Muster schlich mir eine (für einen Physiker nicht gerade schmeichelhafte) Frage durchs Gemüt: Greift die Natur bei der „Auswahl“ ihrer Motive manchmal in die falsche Schublade? Waren diese Strukturen nicht eigentlich den Fichten und Tannen vorbehalten?

Kalt erwischt

Zunächst waren es Tautropfen. Der Temperaturabfall in der Nacht vor allem an kleinen Einheiten wie den Grasblättern ließ die Luftfeuchte über 100% ansteigen und den überschüssigen Wasserdampf in Form von wachsenden Wassertropfen kondensieren. Doch die weiter sinkende Temperatur unterschritt schließlich den Gefrierpunkt: Die Tropfen erstarrten und tauschten ihre spiegelnde Brillanz gegen eine eisige Härte ein. Nahm man sie in die Hand, so flossen sie dahin wie nichts…

Strukturiertes Eisschmelzen

Eis schwimmt auf dem Wasser. Denn anders als bei vielen anderen Stoffen nimmt die Dichte von Wasser mit abnehmender Temperatur bis 4° C zwar zu, danach wird sie jedoch wieder geringer. Kaum auszumalen, wenn es diese Anomalie des Wassers nicht gäbe. Daher schmilzt eine Eisschicht auch meistens über der sie tragenden Wasseroberfläche. Wenn die feste Eisschicht jedoch wie im vorliegenden Fall in einer Regentonne verkeilt ist und am Aufsteigen als Ganzes gehindert wird, bildet sich über dem Eis eine Wasserschicht.
Das Eis schmilzt unter dem Wasser und bietet ein interessantes Szenario, wenn man sich denn die Zeit nimmt, dies zu beobachten. Man kann zwar wegen der Transparenz des Wassers kaum etwas direkt sehen, aber einige Vorgänge erlauben Rückschlüsse auf den komplexen Schmelzvorgang. So kann man beispielsweise an der Bewegung von Schmutzpartikeln erschließen, was sich in der Wasserschicht tut.
Im vorliegenden Fall haben sich die komplexen Bewegungen in den Eiskörper „eingebrannt“, was an den mehr oder weniger regelmäßigen Kanälen zu erkennen ist. Die Kanäle zeugen von wärmeren Wasserströmen, die das Eis lokal zum schmelzen bringen und dadurch kälter geworden zur Oberfläche aufsteigen.
In der Mitte sieht man eine ins Eis geschmolzene Mulde, in der sich Schmutz gesammelt hat. Da das Sonnenlicht kaum vom Eis absorbiert wird, wohl aber der dunkle Schmutz, hat sich dieser erwärmt und lokal zu einer stärkeren Abschmelzung geführt.

So schön, dass ich nicht darauf zu treten wage…

Die Spuren im Sand zeugen von der Komplexität des vorangegangenen Sandsturms zum Zeitpunkt als dieser sich beruhigt hatte und diesen Anblick hinterließ. Natürlich lässt sich daraus nicht die Struktur der Luftströmungen ablesen, denn wir haben hier ja nur das Muster des Zusammenwirkens von willenlosen Sandkörnern, die nicht viel mehr als ihre Größe, Dichte (Farbe) und Gewichtskraft einzubringen hatten.
Es ist kein Chaos im Sinne von stochastischer Zufälligkeit entstanden, sondern ein wohgeformtes, von teilweise entmischten hellen und dunklen Sandkörnern untermaltes ästhetisch ansprechendes Rippelfeld.
Ich zögerte auch dann noch, es zu betreten, als das Foto bereits im Kasten war, um es nicht zu zerstören. Diese Hemmung ist natürlich nicht frei von Irrationalität, denn für wen sollte es erhalten bleiben? Die Wahrscheinlichkeit, dass sich in der nächsten halben Stunde jemand hier her verirrt und der sich auch noch von den Strukturen angesprochen gefühlt hätte, war äußerst gering. Außerdem hätte danach der immer noch gemächlich über die Rippel streichende Wind vermutlich schon wieder Neues hervorgebracht.

Mineralische Bäumchen im Steinbruch

Diese schöne Steinplatte habe ich ganz bei uns in der Nähe in einem Steinbruch freigelegt, indem ich ohne großen Aufwand eine darüber liegende Platte abgehoben habe. Ich war sofort begeistert von diesen naturschönen Strukturen. Man blickt hier allerdings nicht auf versteinerte Bäumchen, obwohl es sich ebenfalls um dendritische (dendrites: zum Baum gehörend) Objekte handelt. Diese Dendriten sind vor vielen Millionen Jahren im Plattenkalk gewachsen. Es handelt es sich um Eisen- und Manganabscheidungenen auf Kluftflächen des Kalks. Entstanden sind sie dadurch, dass mineralreiches Wasser mit hohen Konzentrationen von Eisen und Mangan von Ritzen im Gestein ausgehend in mikroskopisch kleine Hohlräume zwischen den Kalksteinlagen eingedrungen sind und sie haben durch ein sogenanntes diffusionsbegrenztes Wachstum (DLA) diese dendritischen Muster hervorgebracht haben.
Der Vorgang lässt sich übrigens in einfachen Freihandexperimenten nachvollziehen ohne Äonen auf das Ergebnis warten zu müssen.

Kristallenes Haar auf moderndem Holz

H. Joachim Schlichting. Spektrum der Wissenschaften

Allein was hilft es dir,
zu spalten Haar um Haar?

Friedrich Rückert (1788–1866)

Im Inneren von nassem Totholz treiben Stoffwechselvorgänge eines Pilzes Feuchtigkeit durch dünne Kanäle nach außen. Bei moderaten Minusgraden gefriert das austretende Wasser dabei zu einem seltenen Anblick: zuckerwatteähnlichem Haareis.

Wasser gefriert in freier Natur in den verschiedensten Formen. Der Strukturreichtum reicht von Schneeflocken über zahlreiche Reif- und Raureifphänomene bis zum Haareis. Diese filigrane Erscheinung gefrorenen Wassers findet man selten. Zum einen ist Haareis lediglich in weitgehend naturbelassenen Waldgebieten anzutreffen, und zwar am Holz bestimmter Laubbäume (vor allem Buchen und Eichen), das nicht abgeräumt wird, sondern ungestört vermodert. Zum anderen muss seinem Auftreten eine feuchte Wetterperiode vorangegangen sein, und die Temperaturen dürfen nur ein wenig unterhalb des Gefrierpunkts liegen.

Das Haareis umsäumt verrottende Holzstücke mit auffälligen, weiß leuchtenden, watteähnlichen Strukturen. Bei näherem Hinsehen entdeckt man, dass die vermeintliche Watte aus vielen sehr dünnen (zirka 0,02 Millimeter) aber langen (bis zu 20 Zentimeter) Eisfäden besteht. Die oft seidenartig schimmernden Fasern treten typischerweise in Büscheln auf. Sie wachsen dicht gedrängt senkrecht zur Oberfläche des Holzstücks aus diesem heraus. Trotzdem verschmelzen die einzelnen Stränge nicht miteinander.

Vor allem letztere Eigenschaft ist sehr erstaunlich. Denn getrennte Eisteile, die sich aber teilweise berühren, neigen dazu, zusammenzufrieren, insbesondere bei Temperaturen in der Nähe des Schmelzpunkts. Die Ausbildung einer gemeinsamen Oberfläche verkleinert die Oberflächenenergie. Warum es bei Haareis anders ist, bleibt vorerst ein Teil seines Geheimnisses, obwohl das Phänomen seit langem bekannt und insbesondere in den letzten Jahrzehnten wissenschaftlich näher untersucht worden ist. Vermutlich spielen hier organische Stoffe eine Rolle, die als schützende Beschichtung wirken.

Schaut man sich die Holzstücke genauer an, so entdeckt man, dass jedes Haar einzeln aus einer winzigen Öffnung im Material heraussprießt. Man gewinnt den Eindruck, ähnlich wie bei der Herstellung von Spagetti würde eine flüssige Substanz durch Düsen gedrückt werden und an der Luft sofort verhärten. Diese Vorstellung ist nicht ganz abwegig, denn laut entsprechender Forschungsarbeiten handelt es sich bei den Löchern in den Holzstücken um die Austrittsöffnungen so genannter Holzstrahlen. Das sind winzige Kanäle, die das Leitgewebe radial von der Mitte bis zur Borke durchziehen und im lebenden Baum dem Transport von Wasser und Nährstoffen dienen. Die einzelnen Eishaare sind an den Mündungen der Holzstrahlen verwurzelt und haben den gleichen Durchmesser wie diese. Außerdem sprießt das Eis stets aus den von der Borke befreiten Abschnitten des Totholzes. Manchmal quillt es sogar aus den Bruchstellen zwischen teilweise gelösten Rindenteilen.

Lange Zeit war unbekannt, wie es im Einzelnen zum frostigen Aufleben der abgestorbenen Holzstücke kommt. Dabei hatte bereits 1918 der später für seine Hypothese der Kontinentaldrift berühmt gewordene Alfred Wegener (1880–1930) wesentliche Erkenntnisse gewonnen. Er hielt das Haareis zunächst selbst für einen der Pilze, die abgestorbenes Holz befallen. Nachdem er erkannte, dass es sich um Eis handelt, vermutete er, Baumpilze seien immerhin maßgeblich an der Entstehung des Haareises beteiligt.

Neuere wissenschaftliche Untersuchungen haben den Zusammenhang mit Pilzen nachgewiesen. Wenn man nämlich vom Eis befreite Holzstücke, die sich unter den passenden meteorologischen Bedingungen anschließend erneut in die kristalline Wolle kleiden, mit Hitze, Alkohol oder Fungiziden behandelt, bleibt der Effekt aus. Außerdem ist geschmolzenes Haareis leicht bräunlich gefärbt, was auf organische Rückstände hinweist. Alle behaarten Äste waren mit einer für Laubbäume typischen Pilzart befallen, der Rosagetönten Gallertkruste (Exediopsis effusa).

Doch welche konkrete Rolle spielt der Pilz bei der Bildung des Haareises? Bei anderen winterlichen Phänomenen wie den nadelartigen Eiskristallen an Pflanzen und anderen Objekten sind zwei Dinge verantwortlich: entweder die Resublimation (Gefrieren ohne vorher flüssig geworden zu sein) von Wasserdampf oder die Kristallisation von unterkühlten Wassertröpfchen. In beiden Fällen lagern sich die Wassermoleküle aus dem Dampf oder der Flüssigkeit von außen an entsprechende Keime beziehungsweise schon vorhandene Kristalle an. Demgegenüber wachsen die Eishaare direkt aus dem Totholz heraus, ähnlich wie tatsächliches Haar aus dem Körper eines Lebewesens. Die entscheidenden Vorgänge passieren also innen. Der Stoffwechsel der Pilze ist dafür eine unabdingbare Voraussetzung.

Der Pilz ernährt sich von dem in den Holzstrahlen vorhandenen organischen Material. Dabei gibt er neben Wasser gasförmiges Kohlendioxid ab. Das drückt Wasser durch die Strahlkanäle aus dem Holz heraus. Molekulare Rückstände der Stoffwechselvorgänge des Pilzes wirken als Kristallisationskeime, an denen es beim Austritt an die kalte Außenluft zu dünnen Fäden gefriert. Der ausgetriebene Strom reißt auch deswegen vorerst nicht ab, weil eine Art Saugeffekt beiträgt. Dadurch wird Wasser zur Grenzfläche des Eises gezogen, wo die Flüssigkeit lokale Ladungsunterschiede zwischen den Holz- und Kristalloberflächen ausgleicht und dadurch die Grenzflächenenergie minimiert. Die Pilztätigkeit erklärt ebenfalls, warum das Phänomen nur bei leichtem Frost auftritt: Die beim Stoffwechsel erzeugte Wärme hält die Temperatur im Ast oberhalb des Gefrierpunkts. Wenn es dafür zu kalt wird, erstarrt die Feuchtigkeit im Holz, und das ganze Schauspiel stoppt.

Ähnlich dem Haupthaar eines Menschen neigen sich ganze Büschel der Eisfäden in Scheiteln und Wirbeln zur einen oder anderen Seite. Das ist vor allem Unterschieden bei der Wachstumsgeschwindigkeit eines jeden Haars zu verdanken. Sie schwankt infolge von Unregelmäßigkeiten an den Rändern der Strahlmündungen. Dieses wilde Verhalten erweckt einen geradezu lebendigen Eindruck, der im Reich der Eiserscheinungen einzigartig ist.

Quelle

Hofmann, D. et. al.: Evidence for biological shaping of hair ice. Biogeosciences 12, 2015

Durch die Scholle gesehen

Die Nordmanntanne schimmert bereits umrisshaft durch die Eisscholle hindurch, die ich aus der schmelzenden Eisschicht des bis vor kurzem zugefrorenen Teichs herausbrach. Sobald sie sich verflüssigt hat, wird der Blick frei und ein naturschönes Relikt des vorangegangenen Frosts vergangen sein. Die schöne Tanne wird bald danach ihre Nadeln abwerfen und ebenfalls vergehen.
Dazu fällt mir der Vers aus »Reuters Morgengesang« von Wilhelm Hauff (1802-1827) ein: Ach, wie bald schwindet Schönheit und Gestalt!

Gebrochene Symmetrie

Nachdem sich der Frost weitgehend zurückgezogen hat, können wir seine langsam vergehenden Hinterlassenschaften bewundern. In diesem Foto ist der Rand eines bewegten und nur teilweise zugefrorenen Gewässers zu sehen, dass durch irgendwelche Hindernisse bedingt zu dieser doppelflügeligen Form gewachsen ist. Interessanterweise ist der Strukturierungsprozess noch nicht abgeschlossen. Der Phasenübergang vom festen in den flüssigen und gasförmigen Zustand ist im vollem Gange und er läuft alles andere als einheitlich ab. Da das Schmelzen zudem relativ viel Energie erfordert, dauert es eine ganze Weile bis merkliche Veränderungen zu beobachten sind. Natürlich passiert in diesen Tagen an allen vereisten Stellen etwas Ähnliches.

Frostig und Farbenprächtig

(c) H. Joachim Schlichting

Pass auf wohin du tritts. Unter deinen Schritten zerbröseln farbige Eisminiaturen, die es wert sind betrachtet zu werden.

Wasservogel

Dieser Wasservogel (zumindest der Kopf besteht aus Wasser) ist nicht nur schön anzusehen, sondern auch physikalisch interessant. Tropfen tendieren dazu, so weit wie möglich Kugelgestalt anzunehmen und können nur durch äußere Bedingungen daran gehindert werden, dieser Tendenz voll und ganz nachzugeben. Dem großen Tropfen auf der Blattspitze ist es auch weitgehend gelungen. Das Blatt ist offenbar ziemlich hydrophob (wasserabweisend), sodass der Kontaktwinkel zwischen Tropfen und Blattoberfläche weit über 90° beträgt. Dafür verantwortlich sind kleine Blatthärchen, auf denen der Tropfen hockt und gar nicht erst in großflächigen Kontakt mit dem eigentlichen Blatt kommt. (Die Physiker sprechen vom Cassie-Baxter-Zustand).
Erstaunlich ist weiterhin, dass die Blattspitze mehr zur Wasserliebe (Hydrophilie) neigt, denn der Tropfen weicht hier deutlich von der Kugelgestalt ab und lässt sich von der Spitze ein wenig in die Länge ziehen. Schuld daran ist weniger der Drang, die Ähnlichkeit mit einem Vogelkopf zu vergrößern (aber wer weiß?) als vielmehr die Tatsache, dass die noch im Wachstum befindliche Spitze noch keine Härchen ausgebildet hat und daher die Hydrophilie der nackten Blattoberfläche mehr zur Geltung kommen kann.
Das was unter dem Wasserkopf wie eine Art Kropf hervorscheint, ist ein weiterer Wassertropfen, der die gräserne Umgebung spiegelt.

Eine Bank lädt aus

Vor einigen Tagen hat mir Claudia Hinz diese schöne Aufnahme von einer Sitzbank geschickt. Der Anblick stimmt uns sofort auf den (vielleicht) bevorstehenden Winter ein, insbesondere dann wenn man sich auf diese Bank setzt. Ich würde das allerdings nicht empfehlen. Zwar sind die Eisstacheln relativ harmlos, sie schmelzen sofort dahin, sobald ein warmer Hintern die dazu nötige Schmelzwärme liefert. Aber genau das ist das Problem. Denn vermutlich würde die Wärmeabgabe, die zum Schmelzen (also der Überführung der Eiskristalle in Wasser) nötig ist, einen drastischen Eingriff ins Wohlbefinden dieses empfindlichen Körperteils führen, zumal das entstandene Wasser zumindest normale Textilien durchtränkt und auf diese Weise die Wärmeleitung zusätzlich „befeuert“. Wenigstens im Prinzip, wie Physiker oft zu sagen pflegen.
Außerdem – und das scheint mir noch schlimmer zu sein – würde man ein seltenes, naturschönes Gebilde unwiderruflich zerstören und das auch noch mit dem Hintern. Welcher Kunstverständige könnte das schon mit seinem Gewissen vereinbaren.
Aber nun im Ernst: Wie kam es überhaupt zu diesem herausfordernden „Naturkunstwerk“?
Ich stelle es mir folgendermaßen vor: Die auf der Bank vorhandenen Regentropfen sind in der kalten Nacht zunächst gefroren, während sich an trockenen Stellen (Rau)reif bildete. Entscheidend ist dabei ja immer, dass Keime vorhanden sind, an denen der Wasserdampf kondensieren bzw. sublimieren (also direkt in Eis übergehen) kann. Die besten Keime sind normalerweise die Eiskristalle selbst, deswegen wachsen sie ja an den Stellen weiter, an denen der Anfang geglückt ist. Wurde den Wassertropfen bereits durch die eisige Verhärtung das innewohnende Verlangen (letzteres ist kein physikalischer Terminus) genommen, kugelförmig zu werden, so erinnert durch den üppigen Eishaarwuchs inzwischen nicht das geringste mehr daran, dass dieses Verlangen überhaupt einmal bestanden haben könnte. Es wäre also durchaus verständlich, dass den Tropfen deshalb die kristallinen Haare zu Berge stehen. 😉

. 😉

Selfie der besonderen Art

Um diese Jahreszeit der tiefstehenden Sonne scheint diese in einem unserer Fenster fast waagerecht hinein und liefert bei fast vollständig herabgelassener Jalousie interessante teils farbige Streifen auf der Rückwand. In diesem Fall wird das Szenario überlagert von zunächst unverbundenen Streifen, aus denen unser visuelles Vermögen der Gestaltwahrnehmung eine Gestalt hervorhebt, die sich als der Fotograf erweist, der vor dem Fenster steht und dieses Foto macht.

Kerzenspirale – aus dem Geist der vier Elemente

Ich stelle in dieser Zeit gerne eine brennende Kerze in einer flachen Schale mit Wasser auf. Vielfältige Reflexe multiplizieren die Flamme und ihre Bewegungen und schaffen ein besonders „elementares“ Szenario, wobei, wenn man das Kerzenwachs als Symbol für das Element Erde ansieht, die anderen drei der vier Elemente der alten Griechen ebenfalls präsent sind: Feuer, Wasser, Luft, Erde.
Im vorliegenden Fall (Foto) ist außerdem etwas Neues entstanden. Der feste Rand der Wachsschüssel, die das flüssige Wachs birgt, war an einer Stelle gebrochen. In regelmäßigem Abstand rann eine kleine Portion Wachs an der Außenseite der Kerze hinab und erstarrte im kühlen Wasser zu einem winzigen schwimmenden Ponton, der zunächst an der Kerze verankert blieb. Bevor die Verbindung zur Kerze erstarrte, kam schon der nächste Wachstropfen und schob seinen Vorgänger sich mit ihm locker verbindend ein stückweit auf den Wassersee hinaus. Das passierte noch einige weitere Male, wobei eine spiralförmige Wachskette entstand.
Leider war ich etwas voreilig, indem ich in der Absicht, die Kerze zu „retten“ das Leck stopfte und damit dem selbstorganisierten Entstehungsprozess der Wachsspirale ein Ende setzte. Spätere Versuche den Vorgang gezielt zu wiederholen misslangen bzw. brachten andere aber ebemfalls schöne Gebilde hervor.
Gelungen ist aber die Rettung der spiralförmigen Wachskette, die sich hier auf dem schwarzen Karton naturschön präsentieren lässt.

Sanddünen – wie kleine Gebirgsketten

Das Foto zeigt die Leeseite einer Sanddüne, an der durch welche Einflüsse auch immer einige Sandlawinen abgingen, die bei ihrem Abgang weitere Minilawinen auslösten. Das ganze führte dann zu einer naturschönen Struktur, die an karge Gebirgsketten erinnert, wie man sie zuweilen vom Flugzeug aus beobachen kann.

Wasserwellen formen rechte Winkel

Die gegen den Strand laufenden Wellen kommen schließlich zur Ruhe, kehren um und versickern teilweise im Sand. Dabei hinterlassen sie stets eine feine Linie aus mittransportierten Teilchen. Wenn die nächste Welle noch weiter ausläuft, rückt diese Linie noch ein Stück weiter landeinwärts. Wenn wegen der eintretenden Ebbe die folgenden Wellen es nicht mehr bis zur letzten Linie schaffen, bleibt diese dann unangetastet liegen. Das ist in diesem Foto der Fall.
Interessant sind die Strukturen, die sich im Laufe der Zeit ergeben, wenn sich mehrere solcher Grenzlinien überschneiden. Bei größerem Sandtransport können sich dann Muster ergeben, die sehr stark an das Panorama eines im Dunst liegenden Gebirges erinnern. Bei klarem Wasser mit nur wenigen transportierten Teilchen ergeben sich oft feine, filigrane Zeichnungen, die Aufschluss über die leichten Variationen der Wellenrichtungen geben und zu immer wieder neuen Mustern führen. Ich habe mich schon immer gefragt, ob dabei nicht auch mal ganz unwahrscheinliche Muster entstehen, z.B. gerade und senkrecht aufeinander stehende Linien. Die Antwort habe ich dabei meist mitgedacht: Theoretisch müssten solche Strukturen auch vorkommen. Aber wer hat die Zeit, so lange beobachtend zu warten?
Da hilft es nur, dass einem der Zufall entgegen kommt. Und das ist der Fall im hier gezeigten Foto. Zwar sind die Geraden nicht perfekt – das gibt es ohnehin nicht in der Natur – aber genau so etwas wie ich es hier zeigen kann, hatte ich mir vorgestellt.

Staubflusen – die kleinen Helfer.

Staub zeichnet sich dadurch aus, dass er kaum sichtbar sich auf alle Gegenstände niederlässt. Da Staubteilchen nur eine äußerst geringe Masse haben, ist wegen der Flächen-Volumen-Relation die Reibungskraft der Luft so groß, dass sie nur langsam sinken aber auch umgekehrt durch leichte Luftbewegungen wieder aufgewirbelt werden können.
Letzlich landet der meiste Staub auf waagerechten Flächen vor allem auf dem Fußboden. Dennoch verfügen diese Flächen über kleine Helfer, die angetrieben durch leichte Luftbewegungen einen großen Teil des Staubs einsammeln – die Flusen. Flusen setzen sich aus Haaren winzigen Resten von Textilien und ähnlichen Strukturen zusammen und haben die Eigenschaft anziehend auf den ordinären Staub zu wirken. Sie nehmen die kleinen Körnchen, die sich oft in ihrer Winzigkeit verstecken, bereitwillig auf und wachsen dadurch so stark an, dass sie schließlich nicht mehr übersehen werden können. Ein Bekannter von mir verriet mir, dass er diese kleinen „Staubsauger“ sehr schätze. Wenn sie eine bestimmte Größe erreicht hätten, brauchte er sie nur noch einzusammeln. Das sei schnell getan, geräuschlos und auch noch interessant. „Was du da für eindrucksvolle Strukturen zu sehen bekommst – einfach eindrucksvoll und vor allem Zeugnisse von der Kreativität der Natur“.
Mir ist zwar (noch) nicht ganz klar, welche Anziehungskräfte hier im Spiel sind, aber ich vermute, es sind elektrostatische. Aber davon vielleicht später.

Herbstblätter, die sich selber malen

Diese Blätter sind das Ergebnis eines Prozesses, der sowohl aus künstlerischer als auch aus physikalischer Perspektive betrachtet werden kann. Er spielt in der modernen Kunst unter dem Begriff der Décalcomanie zum Beispiel in der Malerie von Max Ernst eine wichtige Rolle und stellt im Rahmen der Nichtlinearen Physik ein Beispiel des Viskosen Verästelns zweier Fluide dar – hier der Luft und der Ölfarbe.

Dies ist nur ein Beispiel der Phänomene, mit denen wir uns im Rahmen der heute in Neustadt (Weinstraße) stattfindenden ganztägigen Fortbildung zu Kunst und Physik befassen.
Die Welt unter physikalischer oder künstlerischer Perspektive zu sehen, ist das Ergebnis eines mehr oder weniger langwierigen Sozialisierungsprozesses. Als maßgebliche kulturelle Aktivitäten tragen umgekehrt u. A. sowohl die Kunst als auch die Physik auf je spezifische Weise zur Ausbildung des Weltbildes der Menschen eines Kulturkreises bei. Es lassen sich vielfältige Wechselwirkungen auf unterschiedlichen Ebenen beobachten. Sich dies an einschlägigen Beispielen bewusst zu machen, ist eines der wesentlichen Anliegen dieser Fortbildung.
Des Weiteren wird gezeigt, wie Künstler von jeher bewusst oder unbewusst physikalisches Wissen bei der Realisierung ihrer Werke ausgenutzt und oft Phänomene dargestellt haben, die die Physik mehr oder weniger stark betreffen. Es wird exemplarisch gezeigt, dass die Kenntnis bereits einiger elementarer physikalischen Zusammenhänge die Wahrnehmung von Kunstwerken vertiefen und das Verständnis für Kunstwerke erweitern kann.

Physikalische Erklärung der sich selber malenden Herbstblätter.

Ein hungriger Baum

Diese Birke hat es auf ein Schild abgesehen, was man offenbar ohne sie zu fragen angebracht hat. Es sieht aus, als würde das Schild irgendwann völlig verschlungen sein, denn Bäume haben Zeit. Die Einverleibung durch Überwallung ist eine natürliche Reaktion eines Baumes, wenn er mit einem Fremdkörper konfrontiert wird. Denn da er ihn nicht anderweitig loswerden kann, verleibt er ihn sich ein und lässt ihn schließlich in seinem Innern verschwinden. Dort behindert er nicht mehr das Kambrium, die Wachstumsschicht des Baumes.
Das Kambium liegt zwischen dem Holz und der Rinde eines Baums. In ihr finden die Zellteilung und damit das Wachstum des Baumes statt. Dabei erfolgt nach innen hin eine Verholzung und nach außen hin entsteht in etwa dem gleichen Maße der Bast, aus dem sich die harte Rinde entwickelt.
Im vorliegenden Fall überwallt das Kambium dank seiner Fähigkeit zum Zellwachstum das Hindernis, um zu verhindern, dass es nicht bis ins Holz dringt und dem Angriff von Pilzen und Bakterien Tür und Tor öffnet. Es entsteht ein Gewebe, das sogenannte Kallus, das schließlich den Fremdköper überwallt. Wenn dieser Prozess abgeschlossen ist, kann das Kambium über die so verschlossene Wunde wieder normale Zellen bilden und normal weiterwachsen.
Im Sinne unserer gestrigen Ausführungen zeigt dieses Beispiel einmal mehr, dass zwei Dinge nicht zugleich am selben Ort sein können und gegebenenfalls besondere Maßnahmen getroffen werden müssen, um die Naturgesetze einzuhalten.

Morbide Schönheit

Pilze beeindrucken mich immer wieder auf überraschend neue Weise. Im vorliegenden Fall sprießt aus dem Stamm eines gesundheitlich bereits angeschlagenen Baums ein ganzes Bündel eines Pilzes hervor, das wie ein üppiger Blumenstrauß wirkt und den Ernst der Situation zu konterkarieren scheint.
Im näheren Umfeld hat bereits die Trockenheit der letzten Jahre gewütet und einen Kahlschlag bewirkt. Der stehengebliebene Baum war wohl so etwas wie die Hoffnung eines Neuanfangs. Nun zeigt sich mit aller Zwiespältigkeit der wuchernden Schönheit, dass auch für diesen Baum – trotz des Schmucks – die Zukunft fragwürdig geworden ist.

Spannendes vom Spinnennetzbau

Spinnen haben das Problem, ihre Netze so zu bauen, dass sie immer schön gespannt bleiben. Bei festen Begrenzungen muss das Netz von Zeit zu Zeit nachgespannt werden, wenn es durch äußere Einflüsse an Spannung und damit an Tauglichkeit für den Beutefang eingebüßt hat.
Im vorliegenden Fall (siehe Foto) ist die Spinne sehr clever zu Werke gegangen. Sie hat ihr Netz in die Krümmung eines langen Grashalms eingebaut. Dabei hat sie den Grashalm über die natürliche, schwerkraftsbedingte Krümmung hinaus durch die Radialfäden ihres Netzes gespannt, sodass die dadurch hervorgerufene rückwirkende Kraft des Halms umgekehrt das Netz unter Spannung hält.
Wird durch irgendwelche äußeren Einwirkungen, z.B. dem Aufprall einer dicken Fliege, das Spinnennetz gedehnt, so wird dadurch der Halm weiter gespannt und zieht in der nachfolgenden Entspannung das Spinnennetz wieder straff.
Tolle Erfindung unter Einbeziehung örtlicher Gegebenheiten – funktional und naturschön.

Dennoch ist in diesem Netz nicht alles in Ordnung. Durch die Tautröpfchen an den Fangfäden und vermutlich der vorangegangenen Einwirkung von Wind haben sich zahlreiche Fadenabschnitte berührt verbunden. Das dürfte für die ordnngsmäßige Funktion des Netzes im Sinne der Spinne nicht garade förderlich sein.

Strukturen der Luft

Die kleinen Hindernisse, von denen man hauptsächlich den Schatten sieht, irritieren den über die Sandfläche fegenden Wind dermaßen, dass man die Ausweichbewegungen in Form von gedrängten Stromlinien im Sand abgebildet findet. Ich stieß auf dieses Muster inmitten einer ansonsten von „normalen“ Sandrippeln belegten Fläche. Da man Luft nicht sehen kann, entgehen einem auch die ästhetisch ansprechenden Strukturen, die durch äußere Einflüsse in der bewegten Luft hervorgerufen werden. Lediglich die Spuren die durch Wechselwirkungen mit sichtbaren Medien, wie hier mit dem Sand, hinterlassen werden, vermitteln zumindest einen kleinen Eindruck von diesen Strukturen.
Es mag auf den ersten Blick zwar reizvoll erscheinen, Luft und damit die Strukturen durch Bewegungen sehen zu können. Wenn man diesen Gedanken weiterspinnt, ergäben sich jedoch Probleme, die ein Leben in der gewohnten Art unmöglich machen würden.

Sandskulptur im Wechselspiel der Gezeiten

Als ich diese Sandskulptur zu Gesicht bekomme, ist sie noch in Bewegung. Sie liegt am Strand in einem Bereich der zunächst noch von den auslaufenden flachen Wellen überflutet wird. Wegen des ablaufenden Wassers wird sie aber immer weniger vom Wasser überflutet und fällt schließlich völlig trocken. Die Skulptur ist nunmehr vollendet, wenn man einmal davon absieht, dass sie in den nächsten Stunden den Sonnenstrahlen ausgesetzt ist.
Mich erinnert sie an eine geheimnisvolle schwarze Blume, die von den Gezeiten geformt wurde.
Der Strand besteht hier aus einer Mischung aus schwarzem und weißem Sand. Dabei geht der Farbunterschied mit einem deutlichen Unterschied in den übrigen physikalischen Eigenschaften einher. Denn der schwarze Sand ist deutlich schwerer, hat also eine größere Dichte als der weiße, sodass es je nach den äußeren Einwirkungen von Wind und fließendem Wasser zu Mischungs- und Entmischungsvorgängen kommt.
Auslöser für die Strukturbildung ist ein Stein, der im oberen Bereich der Sandblume zu erkennen ist. Er lenkt die wechselweise von unten und oben einfallende Strömung zu seinen beiden Seiten ab. Das führt je nach der Geschwindigkeit der sandbeladenen Wasserströme zu Vertiefungen und Ablagerungen, Mischungen und Endmischungen und als Ergebnis schließlich zu dieser Skulptur.
Jedenfalls habe ich diesen Blumengruß zu schätzen gewusst und in Gedanken und zu deren Unterstützung in Fotos mitgenommen, ohne dem realen Gebilde auch nur ein Härchen zu krümmen bzw. ein Körnchen zu verrücken. Dafür sorgt dann schon die nächste Flut.

Natürliche Bälle am Meeresstrand

Manche Menschen fühlen sich gestört durch die mehr oder weniger große Ansammlungen von vermeintlichem, stinkenen „Unrat“ an manchen Stränden des Mittelmeeres, von dem in den beiden Fotos Details gezeigt werden. Dabei handelt es sich um natürlicherweise entstandene, angeschwemmte Überreste von Meerespflanzen. Sie bestehen aus braunen, faserigen kurzen Ästchen, an denen oft noch Reste von länglichen Blättern haften, deren ehemaliges frisches Grün meist nur noch erahnt werden kann.
Es handelt sich um abgestorbene Bestandteile des Neptungrases (posidonia oceanica), das in flachen Bereichen auf dem Meeresgrund wächst. Das Gras ist mit einem Erdspross (Rhizom) im Boden verankert. Es wird zuweilen durch unterschiedliche Einwirkungen herausgerissen und landet irgendwann am Strand, wo es sich an bestimmten Stellen ansammelt.
Als ich diese Ansammlungen zum ersten Mal sah, dachte ich sie wären von beflissenen Reinigungskräften des Strands zusammengetragen worden, um danach abtransportiert zu werden. Das haufenweise Auftreten dieser erst auf den zweiten Blick gefälligen Pflanzenreste ist jedoch einem Selbstorganisationvorgang zu verdanken. Nehmen wir an, einige dieser faserigen Erdsprosse (untere Abbildung) haben sich zufällig ineinander verhakt. Für die anbrandenden Wellen ist es dann schon etwas schwieriger sie vor sich herzutreiben als einzelne Exemplare. Die Wahrscheinlichkeit, dass solche Einzelexemplare durch die unermüdlichen Wellenaktivitäten irgendwann einmal zu einer solchen Ansammlung  gelangen, sich dort verhaken und hängenbleiben, wird mit jedem Sproß größer. Denn die Voraussetzungen für eine Verhakung werden umso günstiger, je reichhaltiger die Ankopplungsmöglichkeiten werden. Und diese wachsen mit der Größe der Ansammlung. Fazit: Je größer der Haufen desto schneller das Wachstum. Oder wie schon in der Bibel zu lesen ist: „Wer da hat, dem wird gegeben“ (Matthäus 13:12).
In der Nähe der massenhaften Ansammlung der Erdsprosse, findet man häufig auffällig perfekt geformter Filzkugeln, deren Herkunft nicht unbedingt sofort mit den Sprossen in Verbindung gebracht wird. Trotz der farblichen Ähnlichkeit erinnert die Kugelform mehr an etwas Hergestelltes als an etwas Gewordenes. Und diese Differenz war für mich offenbar so groß, dass meine Hypothesen zunächst in weiter entfernten (im Nachhinein sehr abwegigen) Gefilden festen Grund suchten, als in den ganz in der Nähe befindlichen Seegrashaufen.
Hat man aber erst einmal begriffen, dass hier ein Zusammenhang besteht, kann es ohne fremde Hilfe gelingen, der Entstehung der Filzkugeln auf den Grund zu kommen. Denn ganz ähnlich wie das selbstorganisierte Wachstum durch Verhakungen an Land zu haufenweisen Ansammlungen von Erdsprossen führt, entstehen auf dem Meeresgrund, also dort wo das Neptungras wächst, auf ähnliche Weise diese merkwürdigen Filzbälle (linkes Foto).
Lange bevor die Erdsprosse das Land erreichen, können sie schon unter Wasser zum Spielball der Wellenbewegung werden. Nachdem sie auf diese Weise in einzelne Bestandteile zerfasert werden, kommen sie durch das rhythmische Hin- und Her der Wellen auf dem Boden immer wieder miteinander in Berührung. Dadurch wächst die Wahrscheinlichkeit sich ineinander zu verhaken. Nach einem ähnlichen Prinzip wie beim Wachstum der Haufen kompletter Sprosse am Meeressaum gilt auch hier: Je mehr Teile bereits ineinander verhakt sind, desto größer ist die Wahrscheinlichkeit, dass weitere Teile eingefangen werden. Wegen der durch den Auftrieb verminderten Gewichtskraft der so entstehenden Filzaggregate, bleiben auch größere Exemplare unter Wasser kaum an einer Stelle liegen. Sie werden durch den anhaltenden Wellengang über den Meeresboden geschoben und nach einer gewissen Abrundung gerollt. Herausragenden Fasern werden dabei zunehmend abgewetzt oder ins Innere der entstehenden Kugel gedrückt, die dadurch weiter verfestigt wird. Der Einfang weiterer Pflanzenfasern wird dadurch schließlich immer unwahrscheinlicher. Außerdem nehmen die runden Gebilde aufgewirbelten Sand auf, wodurch sie immer fester und dichter werden. Es findet eine regelrechte Verfilzung statt und die in alle Richtungen gerollten Bälle nehmen eine immer perfektere Kugelform an.
Dass das Rollen von zunächst unförmigen Gegenständen zwangsläufig zu Kugeln führt, kennt man beispielsweise von der Herstellung von Knetgummikugeln: Ein Stück Knete wird zwischen den rotierenden Handflächen unter sanftem Druck gewalzt. Aber auch die kugelförmigen Perlen von Schmuckarmbändern entstehen aus ursprünglich unförmigen Bruchstücken in rotierenden Behältern gleichsam von selbst.
Aus dem abgestorbenen Neptungras kann nach neueren Erkenntnissen Dämmstoff gewonnen werden, das nicht nur eine hohe Wärmedämmung bewirkt, sondern auch ohne weitere Zusätze die gesetzlich vorgeschriebenen Bedingungen des Brandschutzes erfüllt. Ausschlaggebend dafür ist die silikathaltige Faserstruktur der Pflanze. Hinzu kommt, dass das Material frei ist von gesundheitlich bedenklichen Emissionen und Inhaltsstoffen.
Es sollte aber auch darauf hingewiesen werden, dass das Neptungrass ökologisch gesehen für das Mittelmeer überlebenswichtig ist. Es fungiert als eine Art Unterwasserwald, in dem das Wasser gefiltert und geklärt wird, und es bietet zahlreichen Tieren einen schützenden Lebensraum. Als Sauerstoffproduzent kann es u.A. auch als Kinderstube für Fische angesehen werden. Umso Besorgnis erregender ist es, dass das Neptungras bedroht ist. In den letzten 50 Jahren ist es in seinem Bestand aus mehreren Gründen (u.a. Klimaerwärmung) um 34% zurückgegangen. In manchen Regionen des Mittelmeeres werden daher bereits Schutzmaßnahmen ergriffen.
Den Touristen, die das Seegras oft als Verunreinigung ansehen, sei gesagt, dass das Seegras den Strand sogar schützt, indem es den Wellengang schwächt.  Sie sollten daher mehr die ästhetischen Aspekte z.B. in Gestalt der schönen runden Filzbälle in den Blick nehmen.

Kooperierende Bäume

Bei Wanderungen in Wäldern schaue ich mir gern Bäume an, die nicht so ganz der Norm entsprechen. Die befinden sich meist dort, wo sie so wachsen dürfen wie sie wollen, also außerhalb oder am Rande der wirtschaftlich genutzten Waldbereiche. Ich habe diesem Blog bereits zahlreiche Exemplare anvertraut (z.B. hier und hier und hier und hier und hier). Sie sind oft so merkwürdig, dass es schwerfiele zu glauben, dass es so etwas gibt, hätte man es nicht direkt vor Augen.
Auf einer vor kurzem unternommenen Wanderung in den Dammer Bergen fand ich eine Baumgruppe vor, in der zwei Bäume über einen oberarmdicken Ast in Verbindung stehen. In den Fotos ist das Phänomen aus zwei verschiedenen Perspektiven zu sehen.
Schaut man sich das rechte Foto an, so scheint der linke Baum deutlich von der zusätzlichen Verbindung mit dem anderen Baum zu profitieren. Denn oberhalb der Einmündung dieses fremden Asts weitet sich der Stamm ganz entgegen der Norm, wonach Bäume unten dicker als oben sind.
Anders als bei den bisher entdeckten Baumverbindungen fällt mir hier keine plausible Geschichte ein, wie diese Verbindung wohl angebahnt und realisiert wurde. Vielleicht habt ihr eine Idee?

Gespiegeltes Fundstück

Auf einer Wattwanderung fiel mir ein aus Tang und angeschwemmtem Material gestaltetes Bündel auf, dem nur eine ansprechende Symmetrie fehlte, die ich dann digital hinzufügte… 😉

Die Welt stets tiefer als der Blick*

Wirklichkeit ist ein dynamischer Prozeß und entsteht in jedem Moment neu. Diese Einsicht kann durch die Betrachtung des auf die Zeitspanne der Belichtung der Kamera beschränkten Fotos visualisiert werden.
Allerdings zeigt die Erfahrung, dass dieser schon von Heraklit thematisierte Ablauf nicht mit konstanter Geschwindigkeit vonstatten geht.


* Philippe Jaccottet. Sonnenflecken, Schattenflecken. München 2015, S. 43

Fingrige Umklammerungen

Wenn man so sieht, wie sich die Bäume mit ihren Wurzeln an die Erde klammern, kann leicht der Eindruck entstehen, dass die Erfindung der Hand auch in anderen Bereichen angedacht wurde.
Beim Menschen/Affen sind es 5 Finger pro Hand, weil man sonst Schwierigkeiten beim Rechnen mit dem Zehnersystem bekommen hätte. Da haben die Bäume es leichter. 😉

Apfelstrudel – essbare Wirbel

So schön, dass ich ihn kaum zu essen wagte…

Schließlich half das Foto, in dem der dem Auge zugedachte Teil dieses Apfelstrudels konserviert werden konnte, das Wagnis einzugehen und den Gaumenschmaus nicht kalt werden zu lassen. Das Strudelige war bei diesem Exemplar allenfalls noch in den Girlanden auf der Vanillesoße zu erkennen. Da die schönsten Strudel, Wirbel, Turbulenzen… ohnehin in der Natur und ihren physikalischen Beschreibungen zu entdecken sind, hat diese Einschränkung dem Geschmack zum Glück nicht geschadet.

Photoarchiv