//
Energie und Entropie, Physik im Alltag und Naturphänomene, Rubrik: "Schlichting! ", Strukturbildung, Selbstorganisation & Chaos

Was das Feuer am Leben hält

Schlichting, H. Joachim. In: Spektrum der Wissenschaft 42/12 (2011), S. 44 – 45

Damit eine Kerzenflamme ruhig brennen kann, müssen zahlreiche komplexe Vorgänge perfekt aufeinander abgestimmt sein.

In der Flamme sind alle Naturkräfte tätig.
Novalis (1772 – 1801)

Die gute alte Kerze hat alle Neuerungen der Beleuchtungstechnik überstanden. Gerade auch in der Adventsund Weihnachtszeit, wenn die Tage kürzer werden, setzt sie Zeichen der Hoffnung, der Freude und des Lebens. Was aber denkt sich der Physiker bei ihrem Anblick? Ihn beeindruckt über all das hinaus der Kontrast zwischen der Einfachheit der ruhig vor sich hin brennenden Flamme und dem, was unsichtbar bleibt: dem komplexen Zusammenspiel physikalischer, chemischer und technologischer Vorgänge, die das Phänomen erst möglich machen.
Die Kerzenflamme, so beständig sie erscheint, ist Ergebnis eines äußerst bewegten Mikrogeschehens: In jedem Moment verlassen Teilchen verglühend den klar umgrenzten Bereich der Flamme und werden durch neu erglühende Teilchen ersetzt. Rein energetisch betrachtet ist die Flamme der sichtbare Teil einer „dissipativen Struktur“ (Ilya Prigogine), eines von Energie und Materie durchströmten Systems fernab vom thermodynamischen Gleichgewicht. Aufrechterhalten wird die Flamme durch die Dissipation von Energie: Sie nimmt hochwertige chemische Energie und Materie in Form von Kerzenwachs und Sauerstoff auf und gibt im Gegenzug Wärme und Gase an die Umgebung ab. Energie- und Materieströme bleiben dabei im zeitlichen Mittel konstant. Warum klappt das so gut? Oder etwas technischer gefragt: Wie kommt es zu dieser eindrucksvollen Selbstorganisation gut aufeinander abgestimmter Vorgänge?
In der Regel wird eine Kerze mit Hilfe einer anderen Flamme entzündet. Das im Docht enthaltene erstarrte Wachs beginnt dabei zu schmelzen und zu verdampfen. Schließlich erreicht es eine so hohe Temperatur, dass es mit dem Sauerstoff der Luft reagiert und verbrennt, wobei Wasserdampf und Kohlenstoffdioxid entstehen. Außerdem wird Energie frei, die als Bewegung, Wärme und Licht der Flamme in Erscheinung tritt. Danach geht alles wie von selbst. Dank der von der Flamme ausgehenden Wärmestrahlung sorgt »das System« eigenständig für Nachschub an Brennstoff. Von der Hitze flüssig gehalten steigt das Wachs durch die Kapillaren des Dochts nach oben. Gleichzeitig schmilzt die Flamme einen schüsselförmigen Brennstofftank in das obere Ende der festen Kerzensubstanz und füllt ihn mit Vorrat. Auch der Tank erneuert sich ständig, wenngleich man ihm das nicht ansieht: Das feste Wachs, aus dem seine Wand besteht, schmilzt in genau dem Maß, in dem der Docht flüssiges Wachs ins Reaktionszentrum der Flamme transportiert. Erst dort, am oberen Ende des Dochts, verdampft und verbrennt das Wachs schließlich. Denn das flüssige Wachs im Docht liefert die zur Verdampfung nötige Wärme, wodurch seine eigene Temperatur unterhalb des Siedepunkts gehalten wird.

Der Docht neigt sich zur größten Hitze
Probleme gäbe es erst, wenn der Docht zu lang würde. Dann wäre das Gleichgewicht zwischen Brennstoff- und Sauerstoffzufuhr gestört, und die Kerze begänne zu rußen. Doch auch in dieser Hinsicht organisiert sich die Flamme selbst. Weil die brennende Kerze kürzer wird und der heiße Saum der Flamme sich mit ihr nach unten bewegt, schiebt sich der Docht kontinuierlich in die Hitzeregion hinein. Dort verkohlt und verdampft seine Spitze, was seine Länge konstant hält. Zudem kippt der biegsame Docht, je länger er wird, zur Seite weg und damit genau in den bestens mit Sauerstoff versorgten Bereich der Flammenoberfläche. Hier ist die Flamme rund 1400 Grad Celsius heiß, und hier beginnt der Docht auch zu glühen.Kerze_Funktion
Selbst die elegante, stromlinienförmig nach oben gezogene Gestalt der Flamme ist keine bloße Laune der Natur. In ihr wird ein Konvektionsvorgang sichtbar, der für die Funktion des Systems wesentlich ist. Die Temperatur der heißen Flamme sorgt für eine im Vergleich zur Umgebungsluft geringe Dichte der Verbrennungsgase. Der entstehende Auftrieb lässt diese zügig aufsteigen, was Platz schafft für die von unten nachströmende sauerstoffreiche Frischluft. Dieser Vorgang ist für den Fortgang der Verbrennung ebenso wichtig wie der Wachsdampf selbst. Die heißen Gase steigen in einem schmalen Schlauch auf. Das spürt man schon mit bloßen Fingern, es geht aber auch gefahrloser. Stellt man die brennende Kerze ins helle Sonnenlicht, bildet dieses den Schlauch an der dahinterliegenden Wand ab (oben). Denn beim Übergang zwischen kalter Umgebungsluft und heißen Verbrennungsgasen ändert sich schlagartig der Brechungsindex. Ein Teil des Lichts, welches durch das Innere des Schlauchs fällt, wird nach außen abgelenkt und überlagert sich mit dem nicht abgelenkten Licht zu einem schmalen, hellen Band.
Da die Konvektion in der Schwerelosigkeit nicht funktioniert, kämen Raumfahrer nie in den Genuss einer normalen Kerzenflamme. Was aber sähen sie stattdessen? Fixieren Sie einfach eine brennende Kerze in einem durchsichtigen Gefäß und werfen Sie dieses einem (guten) Fänger zu. Während des Flugs sehen Sie, wie die Flamme zu einer winzigen, blau leuchtenden Lichtkugel zusammenschrumpft. Weil unter diesen Bedingungen die Konvektion wegfällt, wird die Flamme nämlich nur über die vergleichsweise langsam ablaufende Diffusion mit Sauerstoff versorgt.
Die Hartnäckigkeit, mit der eine Kerzenflamme allen Störungen zum Trotz stets wieder dieselbe Größe einnimmt, beruht auf nichtlinearen Rückkopplungsvorgängen. Wächst die Flamme, muss ein entsprechend größeres Volumen mit Sauerstoff und Wachs versorgt werden. Da das Volumen mit der dritten Potenz der Flammengröße zunimmt, gilt dies auch für das Volumen der zu- und abgeführten Gase. Der Nachschub an Gasen erfolgt aber zwangsläufig durch die äußere Grenzschicht der Flamme, die ihrerseits nur mit dem Quadrat der Flammengröße variiert. Berücksichtigen wir nun noch, dass die Geschwindigkeit, mit der die Gase nachströmen, nicht beliebig groß werden kann, ist dem Flammenwachstum zwangsläufig eine Grenze gesetzt. Dies gilt auch umgekehrt. Verkleinert eine vorübergehende Störung die Flamme, sind auf einmal mehr Verbrennungsgase vorhanden, als benötigt werden. So kann das Gebilde wieder wachsen, bis erneut ein stationäres Gleichgewicht erreicht ist.
Doch warum leuchtet die Flamme überhaupt? Bei der Reaktion von Wachsdampf und Sauerstoff wird auf kleinstem Raum so viel Energie frei, dass die meisten Gasatome in Elektronen und Atomrümpfe – kurz: in ein Plasma – zerlegt werden. Die Natur strebt aber nach Zuständen minimaler Energie. Die Teilchen versuchen also, wieder Gasatome zu bilden, und entledigen sich ihrer überschüssigen Energie durch Aussenden von Lichtteilchen.
Weit wichtiger für die Kerze als Lichtquelle ist aber ein anderer Effekt. Im Inneren der Flamme klappt es mit dem Sauerstoffnachschub nicht mehr so gut. Wie die Farben zeigen (Foto linke Seite), nimmt die Temperatur darum allmählich ab, bis sie in unmittelbarer Dochtnähe noch lediglich 600 bis 800 Grad Celsius beträgt. Das verdampfende Wachs verbrennt dort nur unvollständig. Der nicht verbrannte Kohlenstoff lagert sich zu Rußteilchen zusammen, die mit den Abgasen nach oben steigen und in dem weiß erscheinenden Bereich der Flamme bei etwa 1200 Grad Celsius zu glühen beginnen. Vor allem diesem Glühen ist es zu verdanken, dass die Kerze so hell leuchtet! Eine chemische Unvollkommenheit – schlechte Verbrennung – trägt also wesentlich zu ihrer technologischen Vollkommenheit bei. Es sind übrigens auch genau diese Rußteilchen, die Licht absorbieren und daher der Flamme selbst zu einem Schatten verhelfen.
Ist Ihnen aufgefallen, dass die Stoffwechselvorgänge der Kerze denen von Pflanzen und Tieren überraschend ähneln? In beiden Fällen sind es die Aufnahme von Sauerstoff und Nährstoffen sowie die Abgabe von Wasser, Kohlenstoffdioxid und anderen Substanzen, welche für den Fortbestand der Systeme sorgen. Das haben schon die Dichter erkannt: »Der Baum ist nichts anderes als eine blühende Flamme«, formulierte etwa Novalis. Manchem diente die Metapher sogar als Bild für das Leben schlechthin: »Das, was sich in der Schöpfung Leben nennt«, schrieb Johann Gottfried Herder, »ist in allen Formen und allen Wesen ein und derselbe Geist, eine einzige Flamme.«

http://www.spektrum.de/alias/schlichting/was-das-feuer-am-leben-haelt/1124690

Werbeanzeigen

Diskussionen

9 Gedanken zu “Was das Feuer am Leben hält

  1. Ist das möglich, lieber Joachim, den PDF zum Ausdruck zu bekommen?
    Danke im voraus!
    Gerhard

    Verfasst von kopfundgestalt | 9. Dezember 2018, 11:08
  2. Das ist kein einfacher Artikel, fürwahr! 😉

    Verfasst von kopfundgestalt | 10. Dezember 2018, 18:28

Trackbacks/Pingbacks

  1. Pingback: Zum 1. Advent – Die Flamme als Prozess | Die Welt physikalisch gesehen - 27. November 2016

  2. Pingback: Ich bin Feuer und Flamme für die Kerze – 2. Advent | Die Welt physikalisch gesehen - 9. Dezember 2018

  3. Pingback: Tiefenstruktur einer brennenden Kerze | Die Welt physikalisch gesehen - 16. Dezember 2018

  4. Pingback: Osterfeuer – Verheißung von Licht und Wärme | Die Welt physikalisch gesehen - 22. April 2019

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden /  Ändern )

Google Foto

Du kommentierst mit Deinem Google-Konto. Abmelden /  Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden /  Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden /  Ändern )

Verbinde mit %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Photoarchiv

Werbeanzeigen
%d Bloggern gefällt das: